Deque 数据结构

双端队列(Deque)是一种 队列,其中元素的插入和删除都可以从前端或后端执行。因此,它不遵循先进先出(FIFO)规则。

representation of deque data structure
双端队列的表示

双端队列的类型

  • 输入受限双端队列
    在此双端队列中,输入仅限于一个端点,但允许在两个端点进行删除。
  • 输出受限双端队列
    在此双端队列中,输出仅限于一个端点,但允许在两个端点进行插入。

双端队列的操作

以下是双端队列的 循环数组 实现。在循环数组中,如果数组已满,我们会从头开始。

但在线性数组实现中,如果数组已满,则无法再插入元素。在下面的每个操作中,如果数组已满,将显示“溢出消息”。

在执行以下操作之前,会遵循以下步骤。

  1. 取一个大小为 n 的数组(双端队列)。
  2. 设置两个指针 front = -1rear = 0
initialize an array and pointers for deque operations
初始化双端队列的数组和指针

1. 从前端插入

此操作将在前端添加一个元素。

  1. 检查双端队列是否已满。
    check the position of front
    检查前端的位置
  2. 如果双端队列已满(即 (front == 0 && rear == n - 1) || (front == rear + 1) ),则无法执行插入操作(溢出条件)。
  3. 如果双端队列为空,则重新初始化 front = 0。然后,将新键添加到 array[front]
  4. 如果 front = 0,则重新初始化 front = n-1(最后一个索引)。
    if front is equal to 0, shift front to the end
    将前端移到末尾
  5. 否则,将 front 减 1。
  6. 将新键 5 添加到 array[front]
    Insert element at the position of front
    将元素插入前端

2. 从后端插入

此操作将元素添加到后端。

  1. 检查双端队列是否已满。
    check if deque is full
    检查双端队列是否已满
  2. 如果双端队列已满,则无法执行插入操作(溢出条件)。
  3. 如果双端队列为空,则重新初始化 rear = 0。然后,将新键添加到 array[rear]
  4. 如果 rear = n - 1,则重新初始化 real = 0(第一个索引)。
  5. 否则,将 rear 加 1。
    if deque is not full increase rear
    增加后端
  6. 将新键 5 添加到 array[rear]
    insert element at the rear
    将元素插入后端

3. 从前端删除

此操作从 front 删除一个元素。

  1. 检查双端队列是否为空。
    check if deque is empty
    检查双端队列是否为空
  2. 如果双端队列为空(即 front = -1),则无法执行删除操作(下溢条件)。
  3. 如果双端队列只有一个元素(即 front = rear),则将 front = -1rear = -1
  4. 否则,如果 front 在最后一个索引(即 front = n - 1),则将 front = 0
  5. 否则,front = front + 1
    increase the index of front
    增加前端

4. 从后端删除

此操作从 rear 删除一个元素。

  1. 检查双端队列是否为空。
    check if deque is empty
    检查双端队列是否为空
  2. 如果双端队列为空(即 front = -1),则无法执行删除操作(下溢条件)。
  3. 如果双端队列只有一个元素(即 front = rear),则将 front = -1rear = -1,否则按照以下步骤操作。
  4. 如果 rear 在第一个索引(即 rear = 0),则重新初始化 rear = n - 1
  5. 否则,rear = rear - 1
    decrease the position of rear
    减少后端

5. 检查空

此操作检查双端队列是否为空。如果 front = -1,则双端队列为空。

6. 检查满

此操作检查双端队列是否已满。如果 front = 0rear = n - 1front = rear + 1,则双端队列已满。


Python、Java、C 和 C++ 中的双端队列实现

# Deque implementaion in python

class Deque:
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []

    def addRear(self, item):
        self.items.append(item)

    def addFront(self, item):
        self.items.insert(0, item)

    def removeFront(self):
        return self.items.pop(0)

    def removeRear(self):
        return self.items.pop()

    def size(self):
        return len(self.items)


d = Deque()
print(d.isEmpty())
d.addRear(8)
d.addRear(5)
d.addFront(7)
d.addFront(10)
print(d.size())
print(d.isEmpty())
d.addRear(11)
print(d.removeRear())
print(d.removeFront())
d.addFront(55)
d.addRear(45)
print(d.items)
// Deque implementation in Java

class Deque {
  static final int MAX = 100;
  int arr[];
  int front;
  int rear;
  int size;

  public Deque(int size) {
    arr = new int[MAX];
    front = -1;
    rear = 0;
    this.size = size;
  }

  boolean isFull() {
    return ((front == 0 && rear == size - 1) || front == rear + 1);
  }

  boolean isEmpty() {
    return (front == -1);
  }

  void insertfront(int key) {
    if (isFull()) {
      System.out.println("Overflow");
      return;
    }

    if (front == -1) {
      front = 0;
      rear = 0;
    }

    else if (front == 0)
      front = size - 1;

    else
      front = front - 1;

    arr[front] = key;
  }

  void insertrear(int key) {
    if (isFull()) {
      System.out.println(" Overflow ");
      return;
    }

    if (front == -1) {
      front = 0;
      rear = 0;
    }

    else if (rear == size - 1)
      rear = 0;

    else
      rear = rear + 1;

    arr[rear] = key;
  }

  void deletefront() {
    if (isEmpty()) {
      System.out.println("Queue Underflow\n");
      return;
    }

    // Deque has only one element
    if (front == rear) {
      front = -1;
      rear = -1;
    } else if (front == size - 1)
      front = 0;

    else
      front = front + 1;
  }

  void deleterear() {
    if (isEmpty()) {
      System.out.println(" Underflow");
      return;
    }

    if (front == rear) {
      front = -1;
      rear = -1;
    } else if (rear == 0)
      rear = size - 1;
    else
      rear = rear - 1;
  }

  int getFront() {
    if (isEmpty()) {
      System.out.println(" Underflow");
      return -1;
    }
    return arr[front];
  }

  int getRear() {
    if (isEmpty() || rear < 0) {
      System.out.println(" Underflow\n");
      return -1;
    }
    return arr[rear];
  }

  public static void main(String[] args) {

    Deque dq = new Deque(4);

    System.out.println("Insert element at rear end : 12 ");
    dq.insertrear(12);

    System.out.println("insert element at rear end : 14 ");
    dq.insertrear(14);

    System.out.println("get rear element : " + dq.getRear());

    dq.deleterear();
    System.out.println("After delete rear element new rear become : " + dq.getRear());

    System.out.println("inserting element at front end");
    dq.insertfront(13);

    System.out.println("get front element: " + dq.getFront());

    dq.deletefront();

    System.out.println("After delete front element new front become : " + +dq.getFront());

  }
}
// Deque implementation in C

#include <stdio.h>

#define MAX 10

void addFront(int *, int, int *, int *);
void addRear(int *, int, int *, int *);
int delFront(int *, int *, int *);
int delRear(int *, int *, int *);
void display(int *);
int count(int *);

int main() {
  int arr[MAX];
  int front, rear, i, n;

  front = rear = -1;
  for (i = 0; i < MAX; i++)
    arr[i] = 0;

  addRear(arr, 5, &front, &rear);
  addFront(arr, 12, &front, &rear);
  addRear(arr, 11, &front, &rear);
  addFront(arr, 5, &front, &rear);
  addRear(arr, 6, &front, &rear);
  addFront(arr, 8, &front, &rear);

  printf("\nElements in a deque: ");
  display(arr);

  i = delFront(arr, &front, &rear);
  printf("\nremoved item: %d", i);

  printf("\nElements in a deque after deletion: ");
  display(arr);

  addRear(arr, 16, &front, &rear);
  addRear(arr, 7, &front, &rear);

  printf("\nElements in a deque after addition: ");
  display(arr);

  i = delRear(arr, &front, &rear);
  printf("\nremoved item: %d", i);

  printf("\nElements in a deque after deletion: ");
  display(arr);

  n = count(arr);
  printf("\nTotal number of elements in deque: %d", n);
}

void addFront(int *arr, int item, int *pfront, int *prear) {
  int i, k, c;

  if (*pfront == 0 && *prear == MAX - 1) {
    printf("\nDeque is full.\n");
    return;
  }

  if (*pfront == -1) {
    *pfront = *prear = 0;
    arr[*pfront] = item;
    return;
  }

  if (*prear != MAX - 1) {
    c = count(arr);
    k = *prear + 1;
    for (i = 1; i <= c; i++) {
      arr[k] = arr[k - 1];
      k--;
    }
    arr[k] = item;
    *pfront = k;
    (*prear)++;
  } else {
    (*pfront)--;
    arr[*pfront] = item;
  }
}

void addRear(int *arr, int item, int *pfront, int *prear) {
  int i, k;

  if (*pfront == 0 && *prear == MAX - 1) {
    printf("\nDeque is full.\n");
    return;
  }

  if (*pfront == -1) {
    *prear = *pfront = 0;
    arr[*prear] = item;
    return;
  }

  if (*prear == MAX - 1) {
    k = *pfront - 1;
    for (i = *pfront - 1; i < *prear; i++) {
      k = i;
      if (k == MAX - 1)
        arr[k] = 0;
      else
        arr[k] = arr[i + 1];
    }
    (*prear)--;
    (*pfront)--;
  }
  (*prear)++;
  arr[*prear] = item;
}

int delFront(int *arr, int *pfront, int *prear) {
  int item;

  if (*pfront == -1) {
    printf("\nDeque is empty.\n");
    return 0;
  }

  item = arr[*pfront];
  arr[*pfront] = 0;

  if (*pfront == *prear)
    *pfront = *prear = -1;
  else
    (*pfront)++;

  return item;
}

int delRear(int *arr, int *pfront, int *prear) {
  int item;

  if (*pfront == -1) {
    printf("\nDeque is empty.\n");
    return 0;
  }

  item = arr[*prear];
  arr[*prear] = 0;
  (*prear)--;
  if (*prear == -1)
    *pfront = -1;
  return item;
}

void display(int *arr) {
  int i;

  printf("\n front:  ");
  for (i = 0; i < MAX; i++)
    printf("  %d", arr[i]);
  printf("  :rear");
}

int count(int *arr) {
  int c = 0, i;

  for (i = 0; i < MAX; i++) {
    if (arr[i] != 0)
      c++;
  }
  return c;
}
// Deque implementation in C++

#include <iostream>
using namespace std;

#define MAX 10

class Deque {
  int arr[MAX];
  int front;
  int rear;
  int size;

   public:
  Deque(int size) {
    front = -1;
    rear = 0;
    this->size = size;
  }

  void insertfront(int key);
  void insertrear(int key);
  void deletefront();
  void deleterear();
  bool isFull();
  bool isEmpty();
  int getFront();
  int getRear();
};

bool Deque::isFull() {
  return ((front == 0 && rear == size - 1) ||
      front == rear + 1);
}

bool Deque::isEmpty() {
  return (front == -1);
}

void Deque::insertfront(int key) {
  if (isFull()) {
    cout << "Overflow\n"
       << endl;
    return;
  }

  if (front == -1) {
    front = 0;
    rear = 0;
  }

  else if (front == 0)
    front = size - 1;

  else
    front = front - 1;

  arr[front] = key;
}

void Deque ::insertrear(int key) {
  if (isFull()) {
    cout << " Overflow\n " << endl;
    return;
  }

  if (front == -1) {
    front = 0;
    rear = 0;
  }

  else if (rear == size - 1)
    rear = 0;

  else
    rear = rear + 1;

  arr[rear] = key;
}

void Deque ::deletefront() {
  if (isEmpty()) {
    cout << "Queue Underflow\n"
       << endl;
    return;
  }

  if (front == rear) {
    front = -1;
    rear = -1;
  } else if (front == size - 1)
    front = 0;

  else
    front = front + 1;
}

void Deque::deleterear() {
  if (isEmpty()) {
    cout << " Underflow\n"
       << endl;
    return;
  }

  if (front == rear) {
    front = -1;
    rear = -1;
  } else if (rear == 0)
    rear = size - 1;
  else
    rear = rear - 1;
}

int Deque::getFront() {
  if (isEmpty()) {
    cout << " Underflow\n"
       << endl;
    return -1;
  }
  return arr[front];
}

int Deque::getRear() {
  if (isEmpty() || rear < 0) {
    cout << " Underflow\n"
       << endl;
    return -1;
  }
  return arr[rear];
}

int main() {
  Deque dq(4);

  cout << "insert element at rear end \n";
  dq.insertrear(5);
  dq.insertrear(11);

  cout << "rear element: "
     << dq.getRear() << endl;

  dq.deleterear();
  cout << "after deletion of the rear element, the new rear element: " << dq.getRear() << endl;

  cout << "insert element at front end \n";

  dq.insertfront(8);

  cout << "front element: " << dq.getFront() << endl;

  dq.deletefront();

  cout << "after deletion of front element new front element: " << dq.getFront() << endl;
}

时间复杂度

所有上述操作的时间复杂度都是常数,即 O(1)


双端队列数据结构的应用

  1. 在软件的撤销操作中。
  2. 在浏览器中存储历史记录。
  3. 用于实现 队列
你觉得这篇文章有帮助吗?

我们的高级学习平台,凭借十多年的经验和数千条反馈创建。

以前所未有的方式学习和提高您的编程技能。

试用 Programiz PRO
  • 交互式课程
  • 证书
  • AI 帮助
  • 2000+ 挑战