AVL 树

AVL 树是一种自平衡二叉搜索树,其中每个节点都维护额外的信息,称为平衡因子,其值可以是 -1、0 或 +1。

AVL 树的名字来源于其发明者 Georgy Adelson-Velsky 和 Landis。


平衡因子

AVL 树中节点的平衡因子是该节点左子树的高度与右子树高度之差。

平衡因子 = (左子树高度 - 右子树高度) 或 (右子树高度 - 左子树高度)

AVL 树的自平衡特性由平衡因子来维持。平衡因子的值应始终为 -1、0 或 +1。

平衡的 AVL 树示例

avl tree
AVL 树

AVL 树上的操作

AVL 树上可以执行的各种操作有:

AVL 树中子树的旋转

在旋转操作中,子树节点的顺序会互换。

有两种类型的旋转:


左旋

在左旋中,右侧节点的排列方式转换为左侧节点的排列方式。

算法

  1. 设初始树为
    left-rotate
    左旋
  2. 如果 y 有左子树,将 y 的左子树的父节点设为 x
    left-rotate
    y 的左子树的父节点设为 x
  3. 如果 x 的父节点为 NULL,将 y 设为树的根节点。
  4. 否则,如果 xp 的左子节点,则将 y 设为 p 的左子节点。
  5. 否则,将 y 设为 p 的右子节点。
    left-rotate
    将 x 的父节点更改为 y 的父节点
  6. x 的父节点设为 y
    left-rotate
    x 的父节点设为 y

右旋

在右旋中,左侧节点的排列方式转换为右侧节点的排列方式。

  1. 设初始树为
    right-rotate
    初始树
  2. 如果 x 有右子树,将 x 的右子树的父节点设为 y
    right-rotate
    x 的右子树的父节点设为 y
  3. 如果 y 的父节点为 NULL,将 x 设为树的根节点。
  4. 否则,如果 y 是其父节点 p 的右子节点,则将 x 设为 p 的右子节点。
  5. 否则,将 x 设为 p 的左子节点。
    right-rotate
    将 y 的父节点设为 x 的父节点。
  6. y 的父节点设为 x
    right-rotate
    y 的父节点设为 x

左右旋和右左旋

在左右旋中,排列方式先向左移动,然后向右移动。

  1. 对 x-y 进行左旋。
    left-right rotate
    左旋 x-y
  2. 对 y-z 进行右旋。
    left-right rotate
    右旋 z-y

在右左旋中,排列方式先向右移动,然后向左移动。

  1. 对 x-y 进行右旋。
    right-left rotate
    右旋 x-y
  2. 对 z-y 进行左旋。
    right-left rotate
    左旋 z-y

插入新节点的算法

一个 newNode 始终作为叶节点插入,平衡因子为 0。

  1. 设初始树为
    initial tree
    用于插入的初始树

    设要插入的节点为
    new node
    新节点
  2. 使用以下递归步骤,转到合适的叶节点以插入 newNode。将 newKey 与当前树的 rootKey 进行比较。
    1. 如果 newKey < rootKey,则对当前节点的左子树调用插入算法,直到到达叶节点。
    2. 否则,如果 newKey > rootKey,则对当前节点的右子树调用插入算法,直到到达叶节点。
    3. 否则,返回 leafNode
      avl tree insertion
      查找插入 newNode 的位置
  3. 将上述步骤得到的 leafKeynewKey 进行比较。
    1. 如果 newKey < leafKey,则将 newNode 设为 leafNodeleftChild
    2. 否则,将 newNode 设为 leafNode 的 rightChild。
      avl tree insertion
      插入新节点
  4. 更新节点的 balanceFactor
    avl tree insertion
    插入后更新平衡因子
  5. 如果节点不平衡,则重新平衡节点。
    1. 如果 balanceFactor > 1,则表示左子树的高度大于右子树的高度。因此,执行右旋或左右旋。
      1. 如果 newNodeKey < leftChildKey,则执行右旋。
      2. 否则,执行左右旋。
        insertion in avl tree
        通过旋转平衡树
        insertion in avl tree
        通过旋转平衡树
    2. 如果 balanceFactor < -1,则表示右子树的高度大于左子树的高度。因此,执行右旋或右左旋。
      1. 如果 newNodeKey > rightChildKey,则执行左旋。
      2. 否则,执行右左旋。
  6. 最终的树是
    left-right insertion
    最终平衡树

删除节点的算法

节点始终作为叶节点删除。删除节点后,节点的平衡因子会发生变化。为了重新平衡平衡因子,会执行适当的旋转。

  1. 定位 nodeToBeDeleted(代码中使用递归来查找 nodeToBeDeleted)。
    node to be deleted
    定位要删除的节点
  2. 删除节点有三种情况:
    1. 如果 nodeToBeDeleted 是叶节点(即没有子节点),则删除 nodeToBeDeleted
    2. 如果 nodeToBeDeleted 有一个子节点,则将 nodeToBeDeleted 的内容替换为其子节点的内容。删除子节点。
    3. 如果 nodeToBeDeleted 有两个子节点,则找到 nodeToBeDeleted 的中序后继 w(即右子树中键值最小的节点)。
      finding the successor
      查找后继
      1. nodeToBeDeleted 的内容替换为 w 的内容。
        substitute the node to be deleted
        替换要删除的节点
      2. 删除叶节点 w
        remove w
        删除 w
  3. 更新节点的 balanceFactor
    update bf
    更新 bf
  4. 如果任何节点的平衡因子不等于 -1、0 或 1,则重新平衡树。
    1. 如果 currentNodebalanceFactor > 1,
      1. 如果 leftChildbalanceFactor >= 0,则执行右旋。
        right-rotate
        右旋以平衡树
      2. 否则,执行左右旋。
    2. 如果 currentNodebalanceFactor < -1,
      1. 如果 rightChildbalanceFactor <= 0,则执行左旋。
      2. 否则,执行右左旋。
  5. 最终的树是
    avl tree
    AVL 树最终

Python、Java 和 C/C++ 示例

# AVL tree implementation in Python


import sys

# Create a tree node
class TreeNode(object):
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.height = 1


class AVLTree(object):

    # Function to insert a node
    def insert_node(self, root, key):

        # Find the correct location and insert the node
        if not root:
            return TreeNode(key)
        elif key < root.key:
            root.left = self.insert_node(root.left, key)
        else:
            root.right = self.insert_node(root.right, key)

        root.height = 1 + max(self.getHeight(root.left),
                              self.getHeight(root.right))

        # Update the balance factor and balance the tree
        balanceFactor = self.getBalance(root)
        if balanceFactor > 1:
            if key < root.left.key:
                return self.rightRotate(root)
            else:
                root.left = self.leftRotate(root.left)
                return self.rightRotate(root)

        if balanceFactor < -1:
            if key > root.right.key:
                return self.leftRotate(root)
            else:
                root.right = self.rightRotate(root.right)
                return self.leftRotate(root)

        return root

    # Function to delete a node
    def delete_node(self, root, key):

        # Find the node to be deleted and remove it
        if not root:
            return root
        elif key < root.key:
            root.left = self.delete_node(root.left, key)
        elif key > root.key:
            root.right = self.delete_node(root.right, key)
        else:
            if root.left is None:
                temp = root.right
                root = None
                return temp
            elif root.right is None:
                temp = root.left
                root = None
                return temp
            temp = self.getMinValueNode(root.right)
            root.key = temp.key
            root.right = self.delete_node(root.right,
                                          temp.key)
        if root is None:
            return root

        # Update the balance factor of nodes
        root.height = 1 + max(self.getHeight(root.left),
                              self.getHeight(root.right))

        balanceFactor = self.getBalance(root)

        # Balance the tree
        if balanceFactor > 1:
            if self.getBalance(root.left) >= 0:
                return self.rightRotate(root)
            else:
                root.left = self.leftRotate(root.left)
                return self.rightRotate(root)
        if balanceFactor < -1:
            if self.getBalance(root.right) <= 0:
                return self.leftRotate(root)
            else:
                root.right = self.rightRotate(root.right)
                return self.leftRotate(root)
        return root

    # Function to perform left rotation
    def leftRotate(self, z):
        y = z.right
        T2 = y.left
        y.left = z
        z.right = T2
        z.height = 1 + max(self.getHeight(z.left),
                           self.getHeight(z.right))
        y.height = 1 + max(self.getHeight(y.left),
                           self.getHeight(y.right))
        return y

    # Function to perform right rotation
    def rightRotate(self, z):
        y = z.left
        T3 = y.right
        y.right = z
        z.left = T3
        z.height = 1 + max(self.getHeight(z.left),
                           self.getHeight(z.right))
        y.height = 1 + max(self.getHeight(y.left),
                           self.getHeight(y.right))
        return y

    # Get the height of the node
    def getHeight(self, root):
        if not root:
            return 0
        return root.height

    # Get balance factore of the node
    def getBalance(self, root):
        if not root:
            return 0
        return self.getHeight(root.left) - self.getHeight(root.right)

    def getMinValueNode(self, root):
        if root is None or root.left is None:
            return root
        return self.getMinValueNode(root.left)

    def preOrder(self, root):
        if not root:
            return
        print("{0} ".format(root.key), end="")
        self.preOrder(root.left)
        self.preOrder(root.right)

    # Print the tree
    def printHelper(self, currPtr, indent, last):
        if currPtr != None:
            sys.stdout.write(indent)
            if last:
                sys.stdout.write("R----")
                indent += "     "
            else:
                sys.stdout.write("L----")
                indent += "|    "
            print(currPtr.key)
            self.printHelper(currPtr.left, indent, False)
            self.printHelper(currPtr.right, indent, True)


myTree = AVLTree()
root = None
nums = [33, 13, 52, 9, 21, 61, 8, 11]
for num in nums:
    root = myTree.insert_node(root, num)
myTree.printHelper(root, "", True)
key = 13
root = myTree.delete_node(root, key)
print("After Deletion: ")
myTree.printHelper(root, "", True)
// AVL tree implementation in Java

// Create node
class Node {
  int item, height;
  Node left, right;

  Node(int d) {
    item = d;
    height = 1;
  }
}

// Tree class
class AVLTree {
  Node root;

  int height(Node N) {
    if (N == null)
      return 0;
    return N.height;
  }

  int max(int a, int b) {
    return (a > b) ? a : b;
  }

  Node rightRotate(Node y) {
    Node x = y.left;
    Node T2 = x.right;
    x.right = y;
    y.left = T2;
    y.height = max(height(y.left), height(y.right)) + 1;
    x.height = max(height(x.left), height(x.right)) + 1;
    return x;
  }

  Node leftRotate(Node x) {
    Node y = x.right;
    Node T2 = y.left;
    y.left = x;
    x.right = T2;
    x.height = max(height(x.left), height(x.right)) + 1;
    y.height = max(height(y.left), height(y.right)) + 1;
    return y;
  }

  // Get balance factor of a node
  int getBalanceFactor(Node N) {
    if (N == null)
      return 0;
    return height(N.left) - height(N.right);
  }

  // Insert a node
  Node insertNode(Node node, int item) {

    // Find the position and insert the node
    if (node == null)
      return (new Node(item));
    if (item < node.item)
      node.left = insertNode(node.left, item);
    else if (item > node.item)
      node.right = insertNode(node.right, item);
    else
      return node;

    // Update the balance factor of each node
    // And, balance the tree
    node.height = 1 + max(height(node.left), height(node.right));
    int balanceFactor = getBalanceFactor(node);
    if (balanceFactor > 1) {
      if (item < node.left.item) {
        return rightRotate(node);
      } else if (item > node.left.item) {
        node.left = leftRotate(node.left);
        return rightRotate(node);
      }
    }
    if (balanceFactor < -1) {
      if (item > node.right.item) {
        return leftRotate(node);
      } else if (item < node.right.item) {
        node.right = rightRotate(node.right);
        return leftRotate(node);
      }
    }
    return node;
  }

  Node nodeWithMimumValue(Node node) {
    Node current = node;
    while (current.left != null)
      current = current.left;
    return current;
  }

  // Delete a node
  Node deleteNode(Node root, int item) {

    // Find the node to be deleted and remove it
    if (root == null)
      return root;
    if (item < root.item)
      root.left = deleteNode(root.left, item);
    else if (item > root.item)
      root.right = deleteNode(root.right, item);
    else {
      if ((root.left == null) || (root.right == null)) {
        Node temp = null;
        if (temp == root.left)
          temp = root.right;
        else
          temp = root.left;
        if (temp == null) {
          temp = root;
          root = null;
        } else
          root = temp;
      } else {
        Node temp = nodeWithMimumValue(root.right);
        root.item = temp.item;
        root.right = deleteNode(root.right, temp.item);
      }
    }
    if (root == null)
      return root;

    // Update the balance factor of each node and balance the tree
    root.height = max(height(root.left), height(root.right)) + 1;
    int balanceFactor = getBalanceFactor(root);
    if (balanceFactor > 1) {
      if (getBalanceFactor(root.left) >= 0) {
        return rightRotate(root);
      } else {
        root.left = leftRotate(root.left);
        return rightRotate(root);
      }
    }
    if (balanceFactor < -1) {
      if (getBalanceFactor(root.right) <= 0) {
        return leftRotate(root);
      } else {
        root.right = rightRotate(root.right);
        return leftRotate(root);
      }
    }
    return root;
  }

  void preOrder(Node node) {
    if (node != null) {
      System.out.print(node.item + " ");
      preOrder(node.left);
      preOrder(node.right);
    }
  }

  // Print the tree
  private void printTree(Node currPtr, String indent, boolean last) {
    if (currPtr != null) {
      System.out.print(indent);
      if (last) {
        System.out.print("R----");
        indent += "   ";
      } else {
        System.out.print("L----");
        indent += "|  ";
      }
      System.out.println(currPtr.item);
      printTree(currPtr.left, indent, false);
      printTree(currPtr.right, indent, true);
    }
  }

  // Driver code
  public static void main(String[] args) {
    AVLTree tree = new AVLTree();
    tree.root = tree.insertNode(tree.root, 33);
    tree.root = tree.insertNode(tree.root, 13);
    tree.root = tree.insertNode(tree.root, 53);
    tree.root = tree.insertNode(tree.root, 9);
    tree.root = tree.insertNode(tree.root, 21);
    tree.root = tree.insertNode(tree.root, 61);
    tree.root = tree.insertNode(tree.root, 8);
    tree.root = tree.insertNode(tree.root, 11);
    tree.printTree(tree.root, "", true);
    tree.root = tree.deleteNode(tree.root, 13);
    System.out.println("After Deletion: ");
    tree.printTree(tree.root, "", true);
  }
}
// AVL tree implementation in C

#include <stdio.h>
#include <stdlib.h>

// Create Node
struct Node {
  int key;
  struct Node *left;
  struct Node *right;
  int height;
};

int max(int a, int b);

// Calculate height
int height(struct Node *N) {
  if (N == NULL)
    return 0;
  return N->height;
}

int max(int a, int b) {
  return (a > b) ? a : b;
}

// Create a node
struct Node *newNode(int key) {
  struct Node *node = (struct Node *)
    malloc(sizeof(struct Node));
  node->key = key;
  node->left = NULL;
  node->right = NULL;
  node->height = 1;
  return (node);
}

// Right rotate
struct Node *rightRotate(struct Node *y) {
  struct Node *x = y->left;
  struct Node *T2 = x->right;

  x->right = y;
  y->left = T2;

  y->height = max(height(y->left), height(y->right)) + 1;
  x->height = max(height(x->left), height(x->right)) + 1;

  return x;
}

// Left rotate
struct Node *leftRotate(struct Node *x) {
  struct Node *y = x->right;
  struct Node *T2 = y->left;

  y->left = x;
  x->right = T2;

  x->height = max(height(x->left), height(x->right)) + 1;
  y->height = max(height(y->left), height(y->right)) + 1;

  return y;
}

// Get the balance factor
int getBalance(struct Node *N) {
  if (N == NULL)
    return 0;
  return height(N->left) - height(N->right);
}

// Insert node
struct Node *insertNode(struct Node *node, int key) {
  // Find the correct position to insertNode the node and insertNode it
  if (node == NULL)
    return (newNode(key));

  if (key < node->key)
    node->left = insertNode(node->left, key);
  else if (key > node->key)
    node->right = insertNode(node->right, key);
  else
    return node;

  // Update the balance factor of each node and
  // Balance the tree
  node->height = 1 + max(height(node->left),
               height(node->right));

  int balance = getBalance(node);
  if (balance > 1 && key < node->left->key)
    return rightRotate(node);

  if (balance < -1 && key > node->right->key)
    return leftRotate(node);

  if (balance > 1 && key > node->left->key) {
    node->left = leftRotate(node->left);
    return rightRotate(node);
  }

  if (balance < -1 && key < node->right->key) {
    node->right = rightRotate(node->right);
    return leftRotate(node);
  }

  return node;
}

struct Node *minValueNode(struct Node *node) {
  struct Node *current = node;

  while (current->left != NULL)
    current = current->left;

  return current;
}

// Delete a nodes
struct Node *deleteNode(struct Node *root, int key) {
  // Find the node and delete it
  if (root == NULL)
    return root;

  if (key < root->key)
    root->left = deleteNode(root->left, key);

  else if (key > root->key)
    root->right = deleteNode(root->right, key);

  else {
    if ((root->left == NULL) || (root->right == NULL)) {
      struct Node *temp = root->left ? root->left : root->right;

      if (temp == NULL) {
        temp = root;
        root = NULL;
      } else
        *root = *temp;
      free(temp);
    } else {
      struct Node *temp = minValueNode(root->right);

      root->key = temp->key;

      root->right = deleteNode(root->right, temp->key);
    }
  }

  if (root == NULL)
    return root;

  // Update the balance factor of each node and
  // balance the tree
  root->height = 1 + max(height(root->left),
               height(root->right));

  int balance = getBalance(root);
  if (balance > 1 && getBalance(root->left) >= 0)
    return rightRotate(root);

  if (balance > 1 && getBalance(root->left) < 0) {
    root->left = leftRotate(root->left);
    return rightRotate(root);
  }

  if (balance < -1 && getBalance(root->right) <= 0)
    return leftRotate(root);

  if (balance < -1 && getBalance(root->right) > 0) {
    root->right = rightRotate(root->right);
    return leftRotate(root);
  }

  return root;
}

// Print the tree
void printPreOrder(struct Node *root) {
  if (root != NULL) {
    printf("%d ", root->key);
    printPreOrder(root->left);
    printPreOrder(root->right);
  }
}

int main() {
  struct Node *root = NULL;

  root = insertNode(root, 2);
  root = insertNode(root, 1);
  root = insertNode(root, 7);
  root = insertNode(root, 4);
  root = insertNode(root, 5);
  root = insertNode(root, 3);
  root = insertNode(root, 8);

  printPreOrder(root);

  root = deleteNode(root, 3);

  printf("\nAfter deletion: ");
  printPreOrder(root);

  return 0;
}
// AVL tree implementation in C++

#include <iostream>
using namespace std;

class Node {
   public:
  int key;
  Node *left;
  Node *right;
  int height;
};

int max(int a, int b);

// Calculate height
int height(Node *N) {
  if (N == NULL)
    return 0;
  return N->height;
}

int max(int a, int b) {
  return (a > b) ? a : b;
}

// New node creation
Node *newNode(int key) {
  Node *node = new Node();
  node->key = key;
  node->left = NULL;
  node->right = NULL;
  node->height = 1;
  return (node);
}

// Rotate right
Node *rightRotate(Node *y) {
  Node *x = y->left;
  Node *T2 = x->right;
  x->right = y;
  y->left = T2;
  y->height = max(height(y->left),
          height(y->right)) +
        1;
  x->height = max(height(x->left),
          height(x->right)) +
        1;
  return x;
}

// Rotate left
Node *leftRotate(Node *x) {
  Node *y = x->right;
  Node *T2 = y->left;
  y->left = x;
  x->right = T2;
  x->height = max(height(x->left),
          height(x->right)) +
        1;
  y->height = max(height(y->left),
          height(y->right)) +
        1;
  return y;
}

// Get the balance factor of each node
int getBalanceFactor(Node *N) {
  if (N == NULL)
    return 0;
  return height(N->left) -
       height(N->right);
}

// Insert a node
Node *insertNode(Node *node, int key) {
  // Find the correct postion and insert the node
  if (node == NULL)
    return (newNode(key));
  if (key < node->key)
    node->left = insertNode(node->left, key);
  else if (key > node->key)
    node->right = insertNode(node->right, key);
  else
    return node;

  // Update the balance factor of each node and
  // balance the tree
  node->height = 1 + max(height(node->left),
               height(node->right));
  int balanceFactor = getBalanceFactor(node);
  if (balanceFactor > 1) {
    if (key < node->left->key) {
      return rightRotate(node);
    } else if (key > node->left->key) {
      node->left = leftRotate(node->left);
      return rightRotate(node);
    }
  }
  if (balanceFactor < -1) {
    if (key > node->right->key) {
      return leftRotate(node);
    } else if (key < node->right->key) {
      node->right = rightRotate(node->right);
      return leftRotate(node);
    }
  }
  return node;
}

// Node with minimum value
Node *nodeWithMimumValue(Node *node) {
  Node *current = node;
  while (current->left != NULL)
    current = current->left;
  return current;
}

// Delete a node
Node *deleteNode(Node *root, int key) {
  // Find the node and delete it
  if (root == NULL)
    return root;
  if (key < root->key)
    root->left = deleteNode(root->left, key);
  else if (key > root->key)
    root->right = deleteNode(root->right, key);
  else {
    if ((root->left == NULL) ||
      (root->right == NULL)) {
      Node *temp = root->left ? root->left : root->right;
      if (temp == NULL) {
        temp = root;
        root = NULL;
      } else
        *root = *temp;
      free(temp);
    } else {
      Node *temp = nodeWithMimumValue(root->right);
      root->key = temp->key;
      root->right = deleteNode(root->right,
                   temp->key);
    }
  }

  if (root == NULL)
    return root;

  // Update the balance factor of each node and
  // balance the tree
  root->height = 1 + max(height(root->left),
               height(root->right));
  int balanceFactor = getBalanceFactor(root);
  if (balanceFactor > 1) {
    if (getBalanceFactor(root->left) >= 0) {
      return rightRotate(root);
    } else {
      root->left = leftRotate(root->left);
      return rightRotate(root);
    }
  }
  if (balanceFactor < -1) {
    if (getBalanceFactor(root->right) <= 0) {
      return leftRotate(root);
    } else {
      root->right = rightRotate(root->right);
      return leftRotate(root);
    }
  }
  return root;
}

// Print the tree
void printTree(Node *root, string indent, bool last) {
  if (root != nullptr) {
    cout << indent;
    if (last) {
      cout << "R----";
      indent += "   ";
    } else {
      cout << "L----";
      indent += "|  ";
    }
    cout << root->key << endl;
    printTree(root->left, indent, false);
    printTree(root->right, indent, true);
  }
}

int main() {
  Node *root = NULL;
  root = insertNode(root, 33);
  root = insertNode(root, 13);
  root = insertNode(root, 53);
  root = insertNode(root, 9);
  root = insertNode(root, 21);
  root = insertNode(root, 61);
  root = insertNode(root, 8);
  root = insertNode(root, 11);
  printTree(root, "", true);
  root = deleteNode(root, 13);
  cout << "After deleting " << endl;
  printTree(root, "", true);
}

AVL 树不同操作的复杂度

插入 删除 搜索
O(log n) O(log n) O(log n)

AVL 树的应用

  • 用于数据库中的大型记录索引
  • 用于大型数据库的搜索
你觉得这篇文章有帮助吗?

我们的高级学习平台,凭借十多年的经验和数千条反馈创建。

以前所未有的方式学习和提高您的编程技能。

试用 Programiz PRO
  • 交互式课程
  • 证书
  • AI 帮助
  • 2000+ 挑战