斐波那契堆

斐波那契堆是一种由一组树组成的数据结构,这些树遵循最小堆或最大堆的性质。我们已经在堆数据结构的文章中讨论了**最小堆**和**最大堆性质**。这两种性质是斐波那契堆中树的特征。

在斐波那契堆中,一个节点可以有多个子节点或没有子节点。此外,它比二项堆和二叉堆支持的堆操作更有效。

斐波那契堆之所以被称为**斐波那契**堆,是因为树的构造方式使得一个n阶的树至少包含Fn+2个节点,其中Fn+2是第(n + 2)个斐波那契数。

Fibonacci Heap
斐波那契堆

斐波那契堆的性质

斐波那契堆的重要性质是:

  1. 它是一组**最小堆**-**有序**的树。(即父节点总是小于子节点。)
  2. 维护一个指向最小元素节点的指针。
  3. 它包含一组标记节点。(减少键操作)
  4. 斐波那契堆中的树是无序的,但有根

斐波那契堆中节点的内存表示

所有树的根节点通过链表连接在一起,以加快访问速度。父节点的子节点通过一个循环双向链表相互连接,如下所示。

使用循环双向链表有两个主要优点:

  1. 从树中删除节点需要O(1)时间。
  2. 连接两个这样的链表需要O(1)时间。
Fibonacci Heap Structure
斐波那契堆结构

斐波那契堆上的操作

插入

算法

insert(H, x)
    degree[x] = 0
    p[x] = NIL
    child[x] = NIL
    left[x] = x
    right[x] = x
    mark[x] = FALSE
    concatenate the root list containing x with root list H 
    if min[H] == NIL or key[x] < key[min[H]]
        then min[H] = x
    n[H] = n[H] + 1

将节点插入到现有堆中遵循以下步骤:

  1. 为元素创建一个新节点。
  2. 检查堆是否为空。
  3. 如果堆为空,将新节点设置为根节点并将其标记为min
  4. 否则,将节点插入到根列表中并更新min
Insertion operation in fibonacci heap
插入示例

查找最小值

最小值始终由min指针给出。

合并

两个斐波那契堆的合并包括以下步骤:

  1. 连接两个堆的根节点。
  2. 通过从新的根列表中选择最小键来更新min
Union of two heaps
两个堆的合并

提取最小值

这是斐波那契堆上最重要的操作。在此操作中,将具有最小值的节点从堆中删除,并重新调整树。

遵循以下步骤:

  1. 删除最小节点。
  2. 将min指针设置为根列表中的下一个根。
  3. 创建一个大小等于删除前堆中树的最大度的数组。
  4. 执行以下操作(步骤5-7),直到没有多个具有相同度的根为止。
  5. 将当前根(min指针)的度映射到数组中的度。
  6. 将下一个根的度映射到数组中的度。
  7. 如果对同一度存在两个以上的映射,则对这些根应用合并操作,以保持最小堆性质(即,最小值位于根上)。

可以通过以下示例来理解上述步骤的实现。

  1. 我们将对以下堆执行提取最小操作。
    Extract min
    斐波那契堆
  2. 删除最小节点,将其所有子节点添加到根列表中,并将min指针设置为根列表中的下一个根。
    Delete the min node
    删除最小节点
  3. 树中的最大度为3。创建一个大小为4的数组,并将下一个根的度与数组进行映射。
    Create an array
    创建数组
  4. 这里,23和7具有相同的度,因此将它们合并。
    Unite those having the same degrees
    合并具有相同度的节点
  5. 同样,7和17具有相同的度,因此也合并它们。
    Unite those having the same degrees
    合并具有相同度的节点
  6. 再次,7和24具有相同的度,因此合并它们。
    Unite those having the same degrees
    合并具有相同度的节点
  7. 映射下一个节点。
    Map the remaining nodes
    映射剩余节点
  8. 再次,52和21具有相同的度,因此合并它们。
    Unite those having the same degrees
    合并具有相同度的节点
  9. 同样,合并21和18。
    Unite those having the same degrees
    合并具有相同度的节点
  10. 映射剩余的根。
    Map the remaining nodes
    映射剩余节点
  11. 最终的堆是。
    Final heap
    最终的斐波那契堆

减少键和删除节点

这些是最重要的操作,将在减少键和删除斐波那契堆中的节点操作中进行讨论。


Python、Java 和 C/C++ 示例

# Fibonacci Heap in python

import math

# Creating fibonacci tree
class FibonacciTree:
    def __init__(self, value):
        self.value = value
        self.child = []
        self.order = 0

    # Adding tree at the end of the tree
    def add_at_end(self, t):
        self.child.append(t)
        self.order = self.order + 1


# Creating Fibonacci heap
class FibonacciHeap:
    def __init__(self):
        self.trees = []
        self.least = None
        self.count = 0

    # Insert a node
    def insert_node(self, value):
        new_tree = FibonacciTree(value)
        self.trees.append(new_tree)
        if (self.least is None or value < self.least.value):
            self.least = new_tree
        self.count = self.count + 1

    # Get minimum value
    def get_min(self):
        if self.least is None:
            return None
        return self.least.value

    # Extract the minimum value
    def extract_min(self):
        smallest = self.least
        if smallest is not None:
            for child in smallest.child:
                self.trees.append(child)
            self.trees.remove(smallest)
            if self.trees == []:
                self.least = None
            else:
                self.least = self.trees[0]
                self.consolidate()
            self.count = self.count - 1
            return smallest.value

    # Consolidate the tree
    def consolidate(self):
        aux = (floor_log(self.count) + 1) * [None]

        while self.trees != []:
            x = self.trees[0]
            order = x.order
            self.trees.remove(x)
            while aux[order] is not None:
                y = aux[order]
                if x.value > y.value:
                    x, y = y, x
                x.add_at_end(y)
                aux[order] = None
                order = order + 1
            aux[order] = x

        self.least = None
        for k in aux:
            if k is not None:
                self.trees.append(k)
                if (self.least is None
                        or k.value < self.least.value):
                    self.least = k


def floor_log(x):
    return math.frexp(x)[1] - 1


fibonacci_heap = FibonacciHeap()

fibonacci_heap.insert_node(7)
fibonacci_heap.insert_node(3)
fibonacci_heap.insert_node(17)
fibonacci_heap.insert_node(24)

print('the minimum value of the fibonacci heap: {}'.format(fibonacci_heap.get_min()))

print('the minimum value removed: {}'.format(fibonacci_heap.extract_min()))
// Operations on Fibonacci Heap in Java

// Node creation
class node {
  node parent;
  node left;
  node right;
  node child;
  int degree;
  boolean mark;
  int key;

  public node() {
    this.degree = 0;
    this.mark = false;
    this.parent = null;
    this.left = this;
    this.right = this;
    this.child = null;
    this.key = Integer.MAX_VALUE;
  }

  node(int x) {
    this();
    this.key = x;
  }

  void set_parent(node x) {
    this.parent = x;
  }

  node get_parent() {
    return this.parent;
  }

  void set_left(node x) {
    this.left = x;
  }

  node get_left() {
    return this.left;
  }

  void set_right(node x) {
    this.right = x;
  }

  node get_right() {
    return this.right;
  }

  void set_child(node x) {
    this.child = x;
  }

  node get_child() {
    return this.child;
  }

  void set_degree(int x) {
    this.degree = x;
  }

  int get_degree() {
    return this.degree;
  }

  void set_mark(boolean m) {
    this.mark = m;
  }

  boolean get_mark() {
    return this.mark;
  }

  void set_key(int x) {
    this.key = x;
  }

  int get_key() {
    return this.key;
  }
}

public class fibHeap {
  node min;
  int n;
  boolean trace;
  node found;

  public boolean get_trace() {
    return trace;
  }

  public void set_trace(boolean t) {
    this.trace = t;
  }

  public static fibHeap create_heap() {
    return new fibHeap();
  }

  fibHeap() {
    min = null;
    n = 0;
    trace = false;
  }

  private void insert(node x) {
    if (min == null) {
      min = x;
      x.set_left(min);
      x.set_right(min);
    } else {
      x.set_right(min);
      x.set_left(min.get_left());
      min.get_left().set_right(x);
      min.set_left(x);
      if (x.get_key() < min.get_key())
        min = x;
    }
    n += 1;
  }

  public void insert(int key) {
    insert(new node(key));
  }

  public void display() {
    display(min);
    System.out.println();
  }

  private void display(node c) {
    System.out.print("(");
    if (c == null) {
      System.out.print(")");
      return;
    } else {
      node temp = c;
      do {
        System.out.print(temp.get_key());
        node k = temp.get_child();
        display(k);
        System.out.print("->");
        temp = temp.get_right();
      } while (temp != c);
      System.out.print(")");
    }
  }

  public static void merge_heap(fibHeap H1, fibHeap H2, fibHeap H3) {
    H3.min = H1.min;

    if (H1.min != null && H2.min != null) {
      node t1 = H1.min.get_left();
      node t2 = H2.min.get_left();
      H1.min.set_left(t2);
      t1.set_right(H2.min);
      H2.min.set_left(t1);
      t2.set_right(H1.min);
    }
    if (H1.min == null || (H2.min != null && H2.min.get_key() < H1.min.get_key()))
      H3.min = H2.min;
    H3.n = H1.n + H2.n;
  }

  public int find_min() {
    return this.min.get_key();
  }

  private void display_node(node z) {
    System.out.println("right: " + ((z.get_right() == null) ? "-1" : z.get_right().get_key()));
    System.out.println("left: " + ((z.get_left() == null) ? "-1" : z.get_left().get_key()));
    System.out.println("child: " + ((z.get_child() == null) ? "-1" : z.get_child().get_key()));
    System.out.println("degree " + z.get_degree());
  }

  public int extract_min() {
    node z = this.min;
    if (z != null) {
      node c = z.get_child();
      node k = c, p;
      if (c != null) {
        do {
          p = c.get_right();
          insert(c);
          c.set_parent(null);
          c = p;
        } while (c != null && c != k);
      }
      z.get_left().set_right(z.get_right());
      z.get_right().set_left(z.get_left());
      z.set_child(null);
      if (z == z.get_right())
        this.min = null;
      else {
        this.min = z.get_right();
        this.consolidate();
      }
      this.n -= 1;
      return z.get_key();
    }
    return Integer.MAX_VALUE;
  }

  public void consolidate() {
    double phi = (1 + Math.sqrt(5)) / 2;
    int Dofn = (int) (Math.log(this.n) / Math.log(phi));
    node[] A = new node[Dofn + 1];
    for (int i = 0; i <= Dofn; ++i)
      A[i] = null;
    node w = min;
    if (w != null) {
      node check = min;
      do {
        node x = w;
        int d = x.get_degree();
        while (A[d] != null) {
          node y = A[d];
          if (x.get_key() > y.get_key()) {
            node temp = x;
            x = y;
            y = temp;
            w = x;
          }
          fib_heap_link(y, x);
          check = x;
          A[d] = null;
          d += 1;
        }
        A[d] = x;
        w = w.get_right();
      } while (w != null && w != check);
      this.min = null;
      for (int i = 0; i <= Dofn; ++i) {
        if (A[i] != null) {
          insert(A[i]);
        }
      }
    }
  }

  // Linking operation
  private void fib_heap_link(node y, node x) {
    y.get_left().set_right(y.get_right());
    y.get_right().set_left(y.get_left());

    node p = x.get_child();
    if (p == null) {
      y.set_right(y);
      y.set_left(y);
    } else {
      y.set_right(p);
      y.set_left(p.get_left());
      p.get_left().set_right(y);
      p.set_left(y);
    }
    y.set_parent(x);
    x.set_child(y);
    x.set_degree(x.get_degree() + 1);
    y.set_mark(false);
  }

  // Search operation
  private void find(int key, node c) {
    if (found != null || c == null)
      return;
    else {
      node temp = c;
      do {
        if (key == temp.get_key())
          found = temp;
        else {
          node k = temp.get_child();
          find(key, k);
          temp = temp.get_right();
        }
      } while (temp != c && found == null);
    }
  }

  public node find(int k) {
    found = null;
    find(k, this.min);
    return found;
  }

  public void decrease_key(int key, int nval) {
    node x = find(key);
    decrease_key(x, nval);
  }

  // Decrease key operation
  private void decrease_key(node x, int k) {
    if (k > x.get_key())
      return;
    x.set_key(k);
    node y = x.get_parent();
    if (y != null && x.get_key() < y.get_key()) {
      cut(x, y);
      cascading_cut(y);
    }
    if (x.get_key() < min.get_key())
      min = x;
  }

  // Cut operation
  private void cut(node x, node y) {
    x.get_right().set_left(x.get_left());
    x.get_left().set_right(x.get_right());

    y.set_degree(y.get_degree() - 1);

    x.set_right(null);
    x.set_left(null);
    insert(x);
    x.set_parent(null);
    x.set_mark(false);
  }

  private void cascading_cut(node y) {
    node z = y.get_parent();
    if (z != null) {
      if (y.get_mark() == false)
        y.set_mark(true);
      else {
        cut(y, z);
        cascading_cut(z);
      }
    }
  }

  // Delete operations
  public void delete(node x) {
    decrease_key(x, Integer.MIN_VALUE);
    int p = extract_min();
  }

  public static void main(String[] args) {
    fibHeap obj = create_heap();
    obj.insert(7);
    obj.insert(26);
    obj.insert(30);
    obj.insert(39);
    obj.insert(10);
    obj.display();

    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
    System.out.println(obj.extract_min());
    obj.display();
  }
}
// Operations on a Fibonacci heap in C

#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct _NODE {
  int key;
  int degree;
  struct _NODE *left_sibling;
  struct _NODE *right_sibling;
  struct _NODE *parent;
  struct _NODE *child;
  bool mark;
  bool visited;
} NODE;

typedef struct fibanocci_heap {
  int n;
  NODE *min;
  int phi;
  int degree;
} FIB_HEAP;

FIB_HEAP *make_fib_heap();
void insertion(FIB_HEAP *H, NODE *new, int val);
NODE *extract_min(FIB_HEAP *H);
void consolidate(FIB_HEAP *H);
void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x);
NODE *find_min_node(FIB_HEAP *H);
void decrease_key(FIB_HEAP *H, NODE *node, int key);
void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node);
void cascading_cut(FIB_HEAP *H, NODE *parent_node);
void Delete_Node(FIB_HEAP *H, int dec_key);

FIB_HEAP *make_fib_heap() {
  FIB_HEAP *H;
  H = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
  H->n = 0;
  H->min = NULL;
  H->phi = 0;
  H->degree = 0;
  return H;
}

// Printing the heap
void print_heap(NODE *n) {
  NODE *x;
  for (x = n;; x = x->right_sibling) {
    if (x->child == NULL) {
      printf("node with no child (%d) \n", x->key);
    } else {
      printf("NODE(%d) with child (%d)\n", x->key, x->child->key);
      print_heap(x->child);
    }
    if (x->right_sibling == n) {
      break;
    }
  }
}

// Inserting nodes
void insertion(FIB_HEAP *H, NODE *new, int val) {
  new = (NODE *)malloc(sizeof(NODE));
  new->key = val;
  new->degree = 0;
  new->mark = false;
  new->parent = NULL;
  new->child = NULL;
  new->visited = false;
  new->left_sibling = new;
  new->right_sibling = new;
  if (H->min == NULL) {
    H->min = new;
  } else {
    H->min->left_sibling->right_sibling = new;
    new->right_sibling = H->min;
    new->left_sibling = H->min->left_sibling;
    H->min->left_sibling = new;
    if (new->key < H->min->key) {
      H->min = new;
    }
  }
  (H->n)++;
}

// Find min node
NODE *find_min_node(FIB_HEAP *H) {
  if (H == NULL) {
    printf(" \n Fibonacci heap not yet created \n");
    return NULL;
  } else
    return H->min;
}

// Union operation
FIB_HEAP *unionHeap(FIB_HEAP *H1, FIB_HEAP *H2) {
  FIB_HEAP *Hnew;
  Hnew = make_fib_heap();
  Hnew->min = H1->min;

  NODE *temp1, *temp2;
  temp1 = Hnew->min->right_sibling;
  temp2 = H2->min->left_sibling;

  Hnew->min->right_sibling->left_sibling = H2->min->left_sibling;
  Hnew->min->right_sibling = H2->min;
  H2->min->left_sibling = Hnew->min;
  temp2->right_sibling = temp1;

  if ((H1->min == NULL) || (H2->min != NULL && H2->min->key < H1->min->key))
    Hnew->min = H2->min;
  Hnew->n = H1->n + H2->n;
  return Hnew;
}

// Calculate the degree
int cal_degree(int n) {
  int count = 0;
  while (n > 0) {
    n = n / 2;
    count++;
  }
  return count;
}

// Consolidate function
void consolidate(FIB_HEAP *H) {
  int degree, i, d;
  degree = cal_degree(H->n);
  NODE *A[degree], *x, *y, *z;
  for (i = 0; i <= degree; i++) {
    A[i] = NULL;
  }
  x = H->min;
  do {
    d = x->degree;
    while (A[d] != NULL) {
      y = A[d];
      if (x->key > y->key) {
        NODE *exchange_help;
        exchange_help = x;
        x = y;
        y = exchange_help;
      }
      if (y == H->min)
        H->min = x;
      fib_heap_link(H, y, x);
      if (y->right_sibling == x)
        H->min = x;
      A[d] = NULL;
      d++;
    }
    A[d] = x;
    x = x->right_sibling;
  } while (x != H->min);

  H->min = NULL;
  for (i = 0; i < degree; i++) {
    if (A[i] != NULL) {
      A[i]->left_sibling = A[i];
      A[i]->right_sibling = A[i];
      if (H->min == NULL) {
        H->min = A[i];
      } else {
        H->min->left_sibling->right_sibling = A[i];
        A[i]->right_sibling = H->min;
        A[i]->left_sibling = H->min->left_sibling;
        H->min->left_sibling = A[i];
        if (A[i]->key < H->min->key) {
          H->min = A[i];
        }
      }
      if (H->min == NULL) {
        H->min = A[i];
      } else if (A[i]->key < H->min->key) {
        H->min = A[i];
      }
    }
  }
}

// Linking
void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x) {
  y->right_sibling->left_sibling = y->left_sibling;
  y->left_sibling->right_sibling = y->right_sibling;

  if (x->right_sibling == x)
    H->min = x;

  y->left_sibling = y;
  y->right_sibling = y;
  y->parent = x;

  if (x->child == NULL) {
    x->child = y;
  }
  y->right_sibling = x->child;
  y->left_sibling = x->child->left_sibling;
  x->child->left_sibling->right_sibling = y;
  x->child->left_sibling = y;
  if ((y->key) < (x->child->key))
    x->child = y;

  (x->degree)++;
}

// Extract min
NODE *extract_min(FIB_HEAP *H) {
  if (H->min == NULL)
    printf("\n The heap is empty");
  else {
    NODE *temp = H->min;
    NODE *pntr;
    pntr = temp;
    NODE *x = NULL;
    if (temp->child != NULL) {
      x = temp->child;
      do {
        pntr = x->right_sibling;
        (H->min->left_sibling)->right_sibling = x;
        x->right_sibling = H->min;
        x->left_sibling = H->min->left_sibling;
        H->min->left_sibling = x;
        if (x->key < H->min->key)
          H->min = x;
        x->parent = NULL;
        x = pntr;
      } while (pntr != temp->child);
    }

    (temp->left_sibling)->right_sibling = temp->right_sibling;
    (temp->right_sibling)->left_sibling = temp->left_sibling;
    H->min = temp->right_sibling;

    if (temp == temp->right_sibling && temp->child == NULL)
      H->min = NULL;
    else {
      H->min = temp->right_sibling;
      consolidate(H);
    }
    H->n = H->n - 1;
    return temp;
  }
  return H->min;
}

void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node) {
  NODE *temp_parent_check;

  if (node_to_be_decrease == node_to_be_decrease->right_sibling)
    parent_node->child = NULL;

  node_to_be_decrease->left_sibling->right_sibling = node_to_be_decrease->right_sibling;
  node_to_be_decrease->right_sibling->left_sibling = node_to_be_decrease->left_sibling;
  if (node_to_be_decrease == parent_node->child)
    parent_node->child = node_to_be_decrease->right_sibling;
  (parent_node->degree)--;

  node_to_be_decrease->left_sibling = node_to_be_decrease;
  node_to_be_decrease->right_sibling = node_to_be_decrease;
  H->min->left_sibling->right_sibling = node_to_be_decrease;
  node_to_be_decrease->right_sibling = H->min;
  node_to_be_decrease->left_sibling = H->min->left_sibling;
  H->min->left_sibling = node_to_be_decrease;

  node_to_be_decrease->parent = NULL;
  node_to_be_decrease->mark = false;
}

void cascading_cut(FIB_HEAP *H, NODE *parent_node) {
  NODE *aux;
  aux = parent_node->parent;
  if (aux != NULL) {
    if (parent_node->mark == false) {
      parent_node->mark = true;
    } else {
      cut(H, parent_node, aux);
      cascading_cut(H, aux);
    }
  }
}

void decrease_key(FIB_HEAP *H, NODE *node_to_be_decrease, int new_key) {
  NODE *parent_node;
  if (H == NULL) {
    printf("\n FIbonacci heap not created ");
    return;
  }
  if (node_to_be_decrease == NULL) {
    printf("Node is not in the heap");
  }

  else {
    if (node_to_be_decrease->key < new_key) {
      printf("\n Invalid new key for decrease key operation \n ");
    } else {
      node_to_be_decrease->key = new_key;
      parent_node = node_to_be_decrease->parent;
      if ((parent_node != NULL) && (node_to_be_decrease->key < parent_node->key)) {
        printf("\n cut called");
        cut(H, node_to_be_decrease, parent_node);
        printf("\n cascading cut called");
        cascading_cut(H, parent_node);
      }
      if (node_to_be_decrease->key < H->min->key) {
        H->min = node_to_be_decrease;
      }
    }
  }
}

void *find_node(FIB_HEAP *H, NODE *n, int key, int new_key) {
  NODE *find_use = n;
  NODE *f = NULL;
  find_use->visited = true;
  if (find_use->key == key) {
    find_use->visited = false;
    f = find_use;
    decrease_key(H, f, new_key);
  }
  if (find_use->child != NULL) {
    find_node(H, find_use->child, key, new_key);
  }
  if ((find_use->right_sibling->visited != true)) {
    find_node(H, find_use->right_sibling, key, new_key);
  }

  find_use->visited = false;
}

FIB_HEAP *insertion_procedure() {
  FIB_HEAP *temp;
  int no_of_nodes, ele, i;
  NODE *new_node;
  temp = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
  temp = NULL;
  if (temp == NULL) {
    temp = make_fib_heap();
  }
  printf(" \n enter number of nodes to be insert = ");
  scanf("%d", &no_of_nodes);
  for (i = 1; i <= no_of_nodes; i++) {
    printf("\n node %d and its key value = ", i);
    scanf("%d", &ele);
    insertion(temp, new_node, ele);
  }
  return temp;
}
void Delete_Node(FIB_HEAP *H, int dec_key) {
  NODE *p = NULL;
  find_node(H, H->min, dec_key, -5000);
  p = extract_min(H);
  if (p != NULL)
    printf("\n Node deleted");
  else
    printf("\n Node not deleted:some error");
}

int main(int argc, char **argv) {
  NODE *new_node, *min_node, *extracted_min, *node_to_be_decrease, *find_use;
  FIB_HEAP *heap, *h1, *h2;
  int operation_no, new_key, dec_key, ele, i, no_of_nodes;
  heap = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
  heap = NULL;
  while (1) {
    printf(" \n Operations \n 1. Create Fibonacci heap \n 2. Insert nodes into fibonacci heap \n 3. Find min \n 4. Union \n 5. Extract min \n 6. Decrease key \n 7.Delete node \n 8. print heap \n 9. exit \n enter operation_no = ");
    scanf("%d", &operation_no);

    switch (operation_no) {
      case 1:
        heap = make_fib_heap();
        break;

      case 2:
        if (heap == NULL) {
          heap = make_fib_heap();
        }
        printf(" enter number of nodes to be insert = ");
        scanf("%d", &no_of_nodes);
        for (i = 1; i <= no_of_nodes; i++) {
          printf("\n node %d and its key value = ", i);
          scanf("%d", &ele);
          insertion(heap, new_node, ele);
        }
        break;

      case 3:
        min_node = find_min_node(heap);
        if (min_node == NULL)
          printf("No minimum value");
        else
          printf("\n min value = %d", min_node->key);
        break;

      case 4:
        if (heap == NULL) {
          printf("\n no FIbonacci heap created \n ");
          break;
        }
        h1 = insertion_procedure();
        heap = unionHeap(heap, h1);
        printf("Unified Heap:\n");
        print_heap(heap->min);
        break;

      case 5:
        if (heap == NULL)
          printf("Empty Fibonacci heap");
        else {
          extracted_min = extract_min(heap);
          printf("\n min value = %d", extracted_min->key);
          printf("\n Updated heap: \n");
          print_heap(heap->min);
        }
        break;

      case 6:
        if (heap == NULL)
          printf("Fibonacci heap is empty");
        else {
          printf(" \n node to be decreased = ");
          scanf("%d", &dec_key);
          printf(" \n enter the new key = ");
          scanf("%d", &new_key);
          find_use = heap->min;
          find_node(heap, find_use, dec_key, new_key);
          printf("\n Key decreased- Corresponding heap:\n");
          print_heap(heap->min);
        }
        break;
      case 7:
        if (heap == NULL)
          printf("Fibonacci heap is empty");
        else {
          printf(" \n Enter node key to be deleted = ");
          scanf("%d", &dec_key);
          Delete_Node(heap, dec_key);
          printf("\n Node Deleted- Corresponding heap:\n");
          print_heap(heap->min);
          break;
        }
      case 8:
        print_heap(heap->min);
        break;

      case 9:
        free(new_node);
        free(heap);
        exit(0);

      default:
        printf("Invalid choice ");
    }
  }
}
// Operations on a Fibonacci heap in C++

#include <cmath>
#include <cstdlib>
#include <iostream>

using namespace std;

// Node creation
struct node {
  int n;
  int degree;
  node *parent;
  node *child;
  node *left;
  node *right;
  char mark;

  char C;
};

// Implementation of Fibonacci heap
class FibonacciHeap {
   private:
  int nH;

  node *H;

   public:
  node *InitializeHeap();
  int Fibonnaci_link(node *, node *, node *);
  node *Create_node(int);
  node *Insert(node *, node *);
  node *Union(node *, node *);
  node *Extract_Min(node *);
  int Consolidate(node *);
  int Display(node *);
  node *Find(node *, int);
  int Decrease_key(node *, int, int);
  int Delete_key(node *, int);
  int Cut(node *, node *, node *);
  int Cascase_cut(node *, node *);
  FibonacciHeap() { H = InitializeHeap(); }
};

// Initialize heap
node *FibonacciHeap::InitializeHeap() {
  node *np;
  np = NULL;
  return np;
}

// Create node
node *FibonacciHeap::Create_node(int value) {
  node *x = new node;
  x->n = value;
  return x;
}

// Insert node
node *FibonacciHeap::Insert(node *H, node *x) {
  x->degree = 0;
  x->parent = NULL;
  x->child = NULL;
  x->left = x;
  x->right = x;
  x->mark = 'F';
  x->C = 'N';
  if (H != NULL) {
    (H->left)->right = x;
    x->right = H;
    x->left = H->left;
    H->left = x;
    if (x->n < H->n)
      H = x;
  } else {
    H = x;
  }
  nH = nH + 1;
  return H;
}

// Create linking
int FibonacciHeap::Fibonnaci_link(node *H1, node *y, node *z) {
  (y->left)->right = y->right;
  (y->right)->left = y->left;
  if (z->right == z)
    H1 = z;
  y->left = y;
  y->right = y;
  y->parent = z;

  if (z->child == NULL)
    z->child = y;

  y->right = z->child;
  y->left = (z->child)->left;
  ((z->child)->left)->right = y;
  (z->child)->left = y;

  if (y->n < (z->child)->n)
    z->child = y;
  z->degree++;
}

// Union Operation
node *FibonacciHeap::Union(node *H1, node *H2) {
  node *np;
  node *H = InitializeHeap();
  H = H1;
  (H->left)->right = H2;
  (H2->left)->right = H;
  np = H->left;
  H->left = H2->left;
  H2->left = np;
  return H;
}

// Display the heap
int FibonacciHeap::Display(node *H) {
  node *p = H;
  if (p == NULL) {
    cout << "Empty Heap" << endl;
    return 0;
  }
  cout << "Root Nodes: " << endl;

  do {
    cout << p->n;
    p = p->right;
    if (p != H) {
      cout << "-->";
    }
  } while (p != H && p->right != NULL);
  cout << endl;
}

// Extract min
node *FibonacciHeap::Extract_Min(node *H1) {
  node *p;
  node *ptr;
  node *z = H1;
  p = z;
  ptr = z;
  if (z == NULL)
    return z;

  node *x;
  node *np;

  x = NULL;

  if (z->child != NULL)
    x = z->child;

  if (x != NULL) {
    ptr = x;
    do {
      np = x->right;
      (H1->left)->right = x;
      x->right = H1;
      x->left = H1->left;
      H1->left = x;
      if (x->n < H1->n)
        H1 = x;

      x->parent = NULL;
      x = np;
    } while (np != ptr);
  }

  (z->left)->right = z->right;
  (z->right)->left = z->left;
  H1 = z->right;

  if (z == z->right && z->child == NULL)
    H = NULL;

  else {
    H1 = z->right;
    Consolidate(H1);
  }
  nH = nH - 1;
  return p;
}

// Consolidation Function
int FibonacciHeap::Consolidate(node *H1) {
  int d, i;
  float f = (log(nH)) / (log(2));
  int D = f;
  node *A[D];

  for (i = 0; i <= D; i++)
    A[i] = NULL;

  node *x = H1;
  node *y;
  node *np;
  node *pt = x;

  do {
    pt = pt->right;

    d = x->degree;

    while (A[d] != NULL)

    {
      y = A[d];

      if (x->n > y->n)

      {
        np = x;

        x = y;

        y = np;
      }

      if (y == H1)
        H1 = x;
      Fibonnaci_link(H1, y, x);
      if (x->right == x)
        H1 = x;
      A[d] = NULL;
      d = d + 1;
    }

    A[d] = x;
    x = x->right;

  }

  while (x != H1);
  H = NULL;
  for (int j = 0; j <= D; j++) {
    if (A[j] != NULL) {
      A[j]->left = A[j];
      A[j]->right = A[j];
      if (H != NULL) {
        (H->left)->right = A[j];
        A[j]->right = H;
        A[j]->left = H->left;
        H->left = A[j];
        if (A[j]->n < H->n)
          H = A[j];
      } else {
        H = A[j];
      }
      if (H == NULL)
        H = A[j];
      else if (A[j]->n < H->n)
        H = A[j];
    }
  }
}

// Decrease Key Operation
int FibonacciHeap::Decrease_key(node *H1, int x, int k) {
  node *y;
  if (H1 == NULL) {
    cout << "The Heap is Empty" << endl;
    return 0;
  }
  node *ptr = Find(H1, x);
  if (ptr == NULL) {
    cout << "Node not found in the Heap" << endl;
    return 1;
  }

  if (ptr->n < k) {
    cout << "Entered key greater than current key" << endl;
    return 0;
  }
  ptr->n = k;
  y = ptr->parent;
  if (y != NULL && ptr->n < y->n) {
    Cut(H1, ptr, y);
    Cascase_cut(H1, y);
  }

  if (ptr->n < H->n)
    H = ptr;

  return 0;
}

// Cutting Function
int FibonacciHeap::Cut(node *H1, node *x, node *y)

{
  if (x == x->right)
    y->child = NULL;
  (x->left)->right = x->right;
  (x->right)->left = x->left;
  if (x == y->child)
    y->child = x->right;
  y->degree = y->degree - 1;
  x->right = x;
  x->left = x;
  (H1->left)->right = x;
  x->right = H1;
  x->left = H1->left;
  H1->left = x;
  x->parent = NULL;
  x->mark = 'F';
}

// Cascade cut
int FibonacciHeap::Cascase_cut(node *H1, node *y) {
  node *z = y->parent;
  if (z != NULL) {
    if (y->mark == 'F') {
      y->mark = 'T';
    } else

    {
      Cut(H1, y, z);
      Cascase_cut(H1, z);
    }
  }
}

// Search function
node *FibonacciHeap::Find(node *H, int k) {
  node *x = H;
  x->C = 'Y';
  node *p = NULL;
  if (x->n == k) {
    p = x;
    x->C = 'N';
    return p;
  }

  if (p == NULL) {
    if (x->child != NULL)
      p = Find(x->child, k);
    if ((x->right)->C != 'Y')
      p = Find(x->right, k);
  }

  x->C = 'N';
  return p;
}

// Deleting key
int FibonacciHeap::Delete_key(node *H1, int k) {
  node *np = NULL;
  int t;
  t = Decrease_key(H1, k, -5000);
  if (!t)
    np = Extract_Min(H);
  if (np != NULL)
    cout << "Key Deleted" << endl;
  else
    cout << "Key not Deleted" << endl;
  return 0;
}

int main() {
  int n, m, l;
  FibonacciHeap fh;
  node *p;
  node *H;
  H = fh.InitializeHeap();

  p = fh.Create_node(7);
  H = fh.Insert(H, p);
  p = fh.Create_node(3);
  H = fh.Insert(H, p);
  p = fh.Create_node(17);
  H = fh.Insert(H, p);
  p = fh.Create_node(24);
  H = fh.Insert(H, p);

  fh.Display(H);

  p = fh.Extract_Min(H);
  if (p != NULL)
    cout << "The node with minimum key: " << p->n << endl;
  else
    cout << "Heap is empty" << endl;

  m = 26;
  l = 16;
  fh.Decrease_key(H, m, l);

  m = 16;
  fh.Delete_key(H, m);
}

复杂度

插入 O(1)
查找最小值 O(1)
合并 O(1)
提取最小值 O(log n)
减少键 O(1)
删除节点 O(log n)

斐波那契堆的应用

  1. 改进Dijkstra算法的渐近运行时间。
你觉得这篇文章有帮助吗?

我们的高级学习平台,凭借十多年的经验和数千条反馈创建。

以前所未有的方式学习和提高您的编程技能。

试用 Programiz PRO
  • 交互式课程
  • 证书
  • AI 帮助
  • 2000+ 挑战