Rabin-Karp算法是一种使用哈希函数在文本中搜索/匹配模式的算法。与朴素字符串匹配算法不同,它在初始阶段不遍历每个字符,而是过滤掉不匹配的字符,然后进行比较。
哈希函数是一种将较大的输入值映射到较小输出值的工具。这个输出值称为哈希值。
Rabin-Karp算法如何工作?
取一系列字符并检查是否存在所需字符串的可能性。如果发现可能性,则执行字符匹配。
让我们通过以下步骤来理解该算法
- 设文本为
文本
要在上述文本中搜索的字符串为模式 - 让我们为问题中将要使用的字符分配一个
数值(v)/权重
。在这里,我们只取了前十个字母(即A到J)。文本权重 - 设n为模式的长度,m为文本的长度。这里,
m = 10,n = 3。
设d为输入集中的字符数。这里,我们取了输入集{A, B, C, ..., J}。所以,d = 10
。你可以假设任何合适的d值。 - 让我们计算模式的哈希值。
文本的哈希值
hash value for pattern(p) = Σ(v * dm-1) mod 13 = ((3 * 102) + (4 * 101) + (4 * 100)) mod 13 = 344 mod 13 = 6
在上面的计算中,选择一个素数(这里是13),以便我们可以用单精度算术执行所有计算。
计算模数的原因为 如下。
- 计算大小为m的文本窗口的哈希值。
For the first window ABC, hash value for text(t) = Σ(v * dn-1) mod 13 = ((1 * 102) + (2 * 101) + (3 * 100)) mod 13 = 123 mod 13 = 6
- 比较模式的哈希值与文本的哈希值。如果它们匹配,则执行字符匹配。
在上面的例子中,第一个窗口(即t)的哈希值与p匹配,所以对ABC和CDD进行字符匹配。由于它们不匹配,所以进入下一个窗口。 - 我们通过减去第一项并加上下一项来计算下一个窗口的哈希值,如下所示。
t = ((1 * 102) + ((2 * 101) + (3 * 100)) * 10 + (3 * 100)) mod 13 = 233 mod 13 = 12
为了优化此过程,我们按以下方式利用先前的哈希值。
t = ((d * (t - v[character to be removed] * h) + v[character to be added] ) mod 13 = ((10 * (6 - 1 * 9) + 3 )mod 13 = 12 Where, h = dm-1 = 103-1 = 100.
- 对于BCC,t = 12 (≠6)。因此,进入下一个窗口。
经过几次搜索后,我们将在文本的窗口CDA中找到匹配项。不同窗口的哈希值
算法
n = t.length m = p.length h = dm-1 mod q p = 0 t0 = 0 for i = 1 to m p = (dp + p[i]) mod q t0 = (dt0 + t[i]) mod q for s = 0 to n - m if p = ts if p[1.....m] = t[s + 1..... s + m] print "pattern found at position" s If s < n-m ts + 1 = (d (ts - t[s + 1]h) + t[s + m + 1]) mod q
Python、Java 和 C/C++ 示例
# Rabin-Karp algorithm in python
d = 10
def search(pattern, text, q):
m = len(pattern)
n = len(text)
p = 0
t = 0
h = 1
i = 0
j = 0
for i in range(m-1):
h = (h*d) % q
# Calculate hash value for pattern and text
for i in range(m):
p = (d*p + ord(pattern[i])) % q
t = (d*t + ord(text[i])) % q
# Find the match
for i in range(n-m+1):
if p == t:
for j in range(m):
if text[i+j] != pattern[j]:
break
j += 1
if j == m:
print("Pattern is found at position: " + str(i+1))
if i < n-m:
t = (d*(t-ord(text[i])*h) + ord(text[i+m])) % q
if t < 0:
t = t+q
text = "ABCCDDAEFG"
pattern = "CDD"
q = 13
search(pattern, text, q)
// Rabin-Karp algorithm in Java
public class RabinKarp {
public final static int d = 10;
static void search(String pattern, String txt, int q) {
int m = pattern.length();
int n = txt.length();
int i, j;
int p = 0;
int t = 0;
int h = 1;
for (i = 0; i < m - 1; i++)
h = (h * d) % q;
// Calculate hash value for pattern and text
for (i = 0; i < m; i++) {
p = (d * p + pattern.charAt(i)) % q;
t = (d * t + txt.charAt(i)) % q;
}
// Find the match
for (i = 0; i <= n - m; i++) {
if (p == t) {
for (j = 0; j < m; j++) {
if (txt.charAt(i + j) != pattern.charAt(j))
break;
}
if (j == m)
System.out.println("Pattern is found at position: " + (i + 1));
}
if (i < n - m) {
t = (d * (t - txt.charAt(i) * h) + txt.charAt(i + m)) % q;
if (t < 0)
t = (t + q);
}
}
}
public static void main(String[] args) {
String txt = "ABCCDDAEFG";
String pattern = "CDD";
int q = 13;
search(pattern, txt, q);
}
}
// Rabin-Karp algorithm in C
#include <stdio.h>
#include <string.h>
#define d 10
void rabinKarp(char pattern[], char text[], int q) {
int m = strlen(pattern);
int n = strlen(text);
int i, j;
int p = 0;
int t = 0;
int h = 1;
for (i = 0; i < m - 1; i++)
h = (h * d) % q;
// Calculate hash value for pattern and text
for (i = 0; i < m; i++) {
p = (d * p + pattern[i]) % q;
t = (d * t + text[i]) % q;
}
// Find the match
for (i = 0; i <= n - m; i++) {
if (p == t) {
for (j = 0; j < m; j++) {
if (text[i + j] != pattern[j])
break;
}
if (j == m)
printf("Pattern is found at position: %d \n", i + 1);
}
if (i < n - m) {
t = (d * (t - text[i] * h) + text[i + m]) % q;
if (t < 0)
t = (t + q);
}
}
}
int main() {
char text[] = "ABCCDDAEFG";
char pattern[] = "CDD";
int q = 13;
rabinKarp(pattern, text, q);
}
// Rabin-Karp algorithm in C++
#include <string.h>
#include <iostream>
using namespace std;
#define d 10
void rabinKarp(char pattern[], char text[], int q) {
int m = strlen(pattern);
int n = strlen(text);
int i, j;
int p = 0;
int t = 0;
int h = 1;
for (i = 0; i < m - 1; i++)
h = (h * d) % q;
// Calculate hash value for pattern and text
for (i = 0; i < m; i++) {
p = (d * p + pattern[i]) % q;
t = (d * t + text[i]) % q;
}
// Find the match
for (i = 0; i <= n - m; i++) {
if (p == t) {
for (j = 0; j < m; j++) {
if (text[i + j] != pattern[j])
break;
}
if (j == m)
cout << "Pattern is found at position: " << i + 1 << endl;
}
if (i < n - m) {
t = (d * (t - text[i] * h) + text[i + m]) % q;
if (t < 0)
t = (t + q);
}
}
}
int main() {
char text[] = "ABCCDDAEFG";
char pattern[] = "CDD";
int q = 13;
rabinKarp(pattern, text, q);
}
Rabin-Karp算法的局限性
虚假命中
当模式的哈希值与文本窗口的哈希值匹配,但该窗口不是实际的模式时,就称为虚假命中。
虚假命中会增加算法的时间复杂度。为了最小化虚假命中,我们使用模数。它可以大大减少虚假命中。
Rabin-Karp算法复杂度
Rabin-Karp算法的平均情况和最佳情况复杂度为O(m + n)
,最坏情况复杂度为O(mn)。
最坏情况复杂度发生在所有窗口的虚假命中次数较多时。
Rabin-Karp算法的应用
- 用于模式匹配
- 用于在更大的文本中搜索字符串