A 斐波那契堆是一种基于树的数据结构,它包含一个由具有最小堆或最大堆属性的树组成的集合。与其他类似数据结构(如二项堆和二叉堆)相比,它的操作在时间复杂度方面更有效率。
现在,我们将讨论两个重要的操作。
减小键
在减小键操作中,键的值被减小到一个较小的值。
以下函数用于减小键。
减小键
- 选择要减小的节点 x,并将其值更改为新值 k。
- 如果 x 的父节点 y 不为 null,并且父节点的键小于 k,则分别调用
Cut(x)
和Cascading-Cut(y)
。 - 如果 x 的键小于 min 的键,则将 x 标记为 min。
Cut
- 从当前位置移除 x 并将其添加到根列表。
- 如果 x 被标记,则将其标记为 false。
Cascading-Cut
- 如果 y 的父节点不为 null,则按照以下步骤进行。
- 如果 y 未被标记,则标记 y。
- 否则,调用
Cut(y)
和Cascading-Cut(y 的父节点)
。
减小键示例
可以通过以下示例来理解上述操作。
示例:将 46 减小到 15。
- 将值 46 减小到 15。
将 46 减小到 15 - Cut 部分: 由于
24 ≠ nill
且15 < 其父节点
,将其 cut 并添加到根列表。Cascading-Cut 部分: 标记 24。将 15 添加到根列表并标记 24
示例:将 35 减小到 5
- 将值 35 减小到 5。
将 35 减小到 5 - Cut 部分:由于
26 ≠ nill
且5 < 其父节点
,将其 cut 并添加到根列表。Cut 5 并将其添加到根列表 - Cascading-Cut 部分:由于 26 被标记,流程转到
Cut
和Cascading-Cut
。
Cut(26):Cut 26 并将其添加到根列表,并将其标记为 false。Cut 26 并将其添加到根列表
Cascading-Cut(24):
由于 24 也被标记,再次调用Cut(24)
和Cascading-Cut(7)
。这些操作的结果如下图所示。Cut 24 并将其添加到根列表 - 由于
5 < 7
,将 5 标记为 min。将 5 标记为 min
删除节点
此过程利用 减小键 和 extract-min 操作。删除节点遵循以下步骤。
- 令 k 为要删除的节点。
- 应用减小键操作将 k 的值减小到可能的最小值(即 -∞)。
- 应用 extract-min 操作来移除此节点。
Python、Java 和 C/C++ 中的减小键和删除节点操作
# Fibonacci Heap in python
import math
class FibonacciTree:
def __init__(self, key):
self.key = key
self.children = []
self.parent = None
self.marked = False
self.order = 0
def add_at_end(self, t):
self.children.append(t)
t.parent = self
self.order = self.order + 1
class FibonacciHeap:
def __init__(self):
self.trees = []
self.least = None
self.count = 0
def insert(self, key):
new_tree = FibonacciTree(key)
self.trees.append(new_tree)
if self.least is None or key < self.least.key:
self.least = new_tree
self.count += 1
def get_min(self):
if self.least is None:
return None
return self.least.key
def extract_min(self):
smallest = self.least
if smallest is not None:
for child in smallest.children:
child.parent = None
self.trees.append(child)
self.trees.remove(smallest)
if not self.trees:
self.least = None
else:
self.least = self.trees[0]
self.consolidate()
self.count -= 1
return smallest.key
def consolidate(self):
aux = (floor_log2(self.count) + 1) * [None]
while self.trees:
x = self.trees[0]
order = x.order
self.trees.remove(x)
while aux[order] is not None:
y = aux[order]
if x.key > y.key:
x, y = y, x
x.add_at_end(y)
aux[order] = None
order += 1
aux[order] = x
self.least = None
for k in aux:
if k is not None:
self.trees.append(k)
if self.least is None or k.key < self.least.key:
self.least = k
def decrease_key(self, x, new_key):
if new_key > x.key:
raise ValueError("New key is greater than current key")
x.key = new_key
y = x.parent
if y is not None and x.key < y.key:
self.cut(x, y)
self.cascading_cut(y)
if x.key < self.least.key:
self.least = x
def cut(self, x, y):
y.children.remove(x)
y.order -= 1
x.parent = None
x.marked = False
self.trees.append(x)
def cascading_cut(self, y):
z = y.parent
if z is not None:
if not y.marked:
y.marked = True
else:
self.cut(y, z)
self.cascading_cut(z)
def delete(self, x):
self.decrease_key(x, float('-inf'))
self.extract_min()
def floor_log2(x):
return math.frexp(x)[1] - 1
fheap = FibonacciHeap()
fheap.insert(11)
fheap.insert(10)
fheap.insert(39)
fheap.insert(26)
fheap.insert(24)
print('Minimum value: {}'.format(fheap.get_min()))
print('Minimum value removed: {}'.format(fheap.extract_min()))
// Operations on Fibonacci Heap in Java
class node {
node parent;
node left;
node right;
node child;
int degree;
boolean mark;
int key;
public node() {
this.degree = 0;
this.mark = false;
this.parent = null;
this.left = this;
this.right = this;
this.child = null;
this.key = Integer.MAX_VALUE;
}
node(int x) {
this();
this.key = x;
}
void set_parent(node x) {
this.parent = x;
}
node get_parent() {
return this.parent;
}
void set_left(node x) {
this.left = x;
}
node get_left() {
return this.left;
}
void set_right(node x) {
this.right = x;
}
node get_right() {
return this.right;
}
void set_child(node x) {
this.child = x;
}
node get_child() {
return this.child;
}
void set_degree(int x) {
this.degree = x;
}
int get_degree() {
return this.degree;
}
void set_mark(boolean m) {
this.mark = m;
}
boolean get_mark() {
return this.mark;
}
void set_key(int x) {
this.key = x;
}
int get_key() {
return this.key;
}
}
public class fibHeap {
node min;
int n;
boolean trace;
node found;
public boolean get_trace() {
return trace;
}
public void set_trace(boolean t) {
this.trace = t;
}
public static fibHeap create_heap() {
return new fibHeap();
}
fibHeap() {
min = null;
n = 0;
trace = false;
}
private void insert(node x) {
if (min == null) {
min = x;
x.set_left(min);
x.set_right(min);
} else {
x.set_right(min);
x.set_left(min.get_left());
min.get_left().set_right(x);
min.set_left(x);
if (x.get_key() < min.get_key())
min = x;
}
n += 1;
}
public void insert(int key) {
insert(new node(key));
}
public void display() {
display(min);
System.out.println();
}
private void display(node c) {
System.out.print("(");
if (c == null) {
System.out.print(")");
return;
} else {
node temp = c;
do {
System.out.print(temp.get_key());
node k = temp.get_child();
display(k);
System.out.print("->");
temp = temp.get_right();
} while (temp != c);
System.out.print(")");
}
}
public static void merge_heap(fibHeap H1, fibHeap H2, fibHeap H3) {
H3.min = H1.min;
if (H1.min != null && H2.min != null) {
node t1 = H1.min.get_left();
node t2 = H2.min.get_left();
H1.min.set_left(t2);
t1.set_right(H2.min);
H2.min.set_left(t1);
t2.set_right(H1.min);
}
if (H1.min == null || (H2.min != null && H2.min.get_key() < H1.min.get_key()))
H3.min = H2.min;
H3.n = H1.n + H2.n;
}
public int find_min() {
return this.min.get_key();
}
private void display_node(node z) {
System.out.println("right: " + ((z.get_right() == null) ? "-1" : z.get_right().get_key()));
System.out.println("left: " + ((z.get_left() == null) ? "-1" : z.get_left().get_key()));
System.out.println("child: " + ((z.get_child() == null) ? "-1" : z.get_child().get_key()));
System.out.println("degree " + z.get_degree());
}
public int extract_min() {
node z = this.min;
if (z != null) {
node c = z.get_child();
node k = c, p;
if (c != null) {
do {
p = c.get_right();
insert(c);
c.set_parent(null);
c = p;
} while (c != null && c != k);
}
z.get_left().set_right(z.get_right());
z.get_right().set_left(z.get_left());
z.set_child(null);
if (z == z.get_right())
this.min = null;
else {
this.min = z.get_right();
this.consolidate();
}
this.n -= 1;
return z.get_key();
}
return Integer.MAX_VALUE;
}
public void consolidate() {
double phi = (1 + Math.sqrt(5)) / 2;
int Dofn = (int) (Math.log(this.n) / Math.log(phi));
node[] A = new node[Dofn + 1];
for (int i = 0; i <= Dofn; ++i)
A[i] = null;
node w = min;
if (w != null) {
node check = min;
do {
node x = w;
int d = x.get_degree();
while (A[d] != null) {
node y = A[d];
if (x.get_key() > y.get_key()) {
node temp = x;
x = y;
y = temp;
w = x;
}
fib_heap_link(y, x);
check = x;
A[d] = null;
d += 1;
}
A[d] = x;
w = w.get_right();
} while (w != null && w != check);
this.min = null;
for (int i = 0; i <= Dofn; ++i) {
if (A[i] != null) {
insert(A[i]);
}
}
}
}
private void fib_heap_link(node y, node x) {
y.get_left().set_right(y.get_right());
y.get_right().set_left(y.get_left());
node p = x.get_child();
if (p == null) {
y.set_right(y);
y.set_left(y);
} else {
y.set_right(p);
y.set_left(p.get_left());
p.get_left().set_right(y);
p.set_left(y);
}
y.set_parent(x);
x.set_child(y);
x.set_degree(x.get_degree() + 1);
y.set_mark(false);
}
private void find(int key, node c) {
if (found != null || c == null)
return;
else {
node temp = c;
do {
if (key == temp.get_key())
found = temp;
else {
node k = temp.get_child();
find(key, k);
temp = temp.get_right();
}
} while (temp != c && found == null);
}
}
public node find(int k) {
found = null;
find(k, this.min);
return found;
}
public void decrease_key(int key, int nval) {
node x = find(key);
decrease_key(x, nval);
}
private void decrease_key(node x, int k) {
if (k > x.get_key())
return;
x.set_key(k);
node y = x.get_parent();
if (y != null && x.get_key() < y.get_key()) {
cut(x, y);
cascading_cut(y);
}
if (x.get_key() < min.get_key())
min = x;
}
private void cut(node x, node y) {
x.get_right().set_left(x.get_left());
x.get_left().set_right(x.get_right());
y.set_degree(y.get_degree() - 1);
x.set_right(null);
x.set_left(null);
insert(x);
x.set_parent(null);
x.set_mark(false);
}
private void cascading_cut(node y) {
node z = y.get_parent();
if (z != null) {
if (y.get_mark() == false)
y.set_mark(true);
else {
cut(y, z);
cascading_cut(z);
}
}
}
public void delete(node x) {
decrease_key(x, Integer.MIN_VALUE);
int p = extract_min();
}
public static void main(String[] args) {
fibHeap obj = create_heap();
obj.insert(7);
obj.insert(26);
obj.insert(30);
obj.insert(39);
obj.insert(10);
obj.display();
System.out.println(obj.extract_min());
obj.display();
System.out.println(obj.extract_min());
obj.display();
System.out.println(obj.extract_min());
obj.display();
System.out.println(obj.extract_min());
obj.display();
System.out.println(obj.extract_min());
obj.display();
}
}
// Operations on a Fibonacci heap in C
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
typedef struct _NODE
{
int key;
int degree;
struct _NODE *left_sibling;
struct _NODE *right_sibling;
struct _NODE *parent;
struct _NODE *child;
bool mark;
bool visited;
} NODE;
typedef struct fibanocci_heap
{
int n;
NODE *min;
int phi;
int degree;
} FIB_HEAP;
FIB_HEAP *make_fib_heap();
void insertion(FIB_HEAP *H, NODE *new, int val);
NODE *extract_min(FIB_HEAP *H);
void consolidate(FIB_HEAP *H);
void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x);
NODE *find_min_node(FIB_HEAP *H);
void decrease_key(FIB_HEAP *H, NODE *node, int key);
void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node);
void cascading_cut(FIB_HEAP *H, NODE *parent_node);
void Delete_Node(FIB_HEAP *H, int dec_key);
FIB_HEAP *make_fib_heap()
{
FIB_HEAP *H;
H = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
H->n = 0;
H->min = NULL;
H->phi = 0;
H->degree = 0;
return H;
}
void new_print_heap(NODE *n)
{
NODE *x;
for (x = n;; x = x->right_sibling)
{
if (x->child == NULL)
{
printf("node with no child (%d) \n", x->key);
}
else
{
printf("NODE(%d) with child (%d)\n", x->key, x->child->key);
new_print_heap(x->child);
}
if (x->right_sibling == n)
{
break;
}
}
}
void insertion(FIB_HEAP *H, NODE *new, int val)
{
new = (NODE *)malloc(sizeof(NODE));
new->key = val;
new->degree = 0;
new->mark = false;
new->parent = NULL;
new->child = NULL;
new->visited = false;
new->left_sibling = new;
new->right_sibling = new;
if (H->min == NULL)
{
H->min = new;
}
else
{
H->min->left_sibling->right_sibling = new;
new->right_sibling = H->min;
new->left_sibling = H->min->left_sibling;
H->min->left_sibling = new;
if (new->key < H->min->key)
{
H->min = new;
}
}
(H->n)++;
}
NODE *find_min_node(FIB_HEAP *H)
{
if (H == NULL)
{
printf(" \n Fibonacci heap not yet created \n");
return NULL;
}
else
return H->min;
}
FIB_HEAP *unionHeap(FIB_HEAP *H1, FIB_HEAP *H2)
{
FIB_HEAP *Hnew;
Hnew = make_fib_heap();
Hnew->min = H1->min;
NODE *temp1, *temp2;
temp1 = Hnew->min->right_sibling;
temp2 = H2->min->left_sibling;
Hnew->min->right_sibling->left_sibling = H2->min->left_sibling;
Hnew->min->right_sibling = H2->min;
H2->min->left_sibling = Hnew->min;
temp2->right_sibling = temp1;
if ((H1->min == NULL) || (H2->min != NULL && H2->min->key < H1->min->key))
Hnew->min = H2->min;
Hnew->n = H1->n + H2->n;
return Hnew;
}
int cal_degree(int n)
{
int count = 0;
while (n > 0)
{
n = n / 2;
count++;
}
return count;
}
void consolidate(FIB_HEAP *H)
{
int degree, i, d;
degree = cal_degree(H->n);
NODE *A[degree], *x, *y, *z;
for (i = 0; i <= degree; i++)
{
A[i] = NULL;
}
x = H->min;
do
{
d = x->degree;
while (A[d] != NULL)
{
y = A[d];
if (x->key > y->key)
{
NODE *exchange_help;
exchange_help = x;
x = y;
y = exchange_help;
}
if (y == H->min)
H->min = x;
fib_heap_link(H, y, x);
if (y->right_sibling == x)
H->min = x;
A[d] = NULL;
d++;
}
A[d] = x;
x = x->right_sibling;
} while (x != H->min);
H->min = NULL;
for (i = 0; i < degree; i++)
{
if (A[i] != NULL)
{
A[i]->left_sibling = A[i];
A[i]->right_sibling = A[i];
if (H->min == NULL)
{
H->min = A[i];
}
else
{
H->min->left_sibling->right_sibling = A[i];
A[i]->right_sibling = H->min;
A[i]->left_sibling = H->min->left_sibling;
H->min->left_sibling = A[i];
if (A[i]->key < H->min->key)
{
H->min = A[i];
}
}
if (H->min == NULL)
{
H->min = A[i];
}
else if (A[i]->key < H->min->key)
{
H->min = A[i];
}
}
}
}
void fib_heap_link(FIB_HEAP *H, NODE *y, NODE *x)
{
y->right_sibling->left_sibling = y->left_sibling;
y->left_sibling->right_sibling = y->right_sibling;
if (x->right_sibling == x)
H->min = x;
y->left_sibling = y;
y->right_sibling = y;
y->parent = x;
if (x->child == NULL)
{
x->child = y;
}
y->right_sibling = x->child;
y->left_sibling = x->child->left_sibling;
x->child->left_sibling->right_sibling = y;
x->child->left_sibling = y;
if ((y->key) < (x->child->key))
x->child = y;
(x->degree)++;
}
NODE *extract_min(FIB_HEAP *H)
{
if (H->min == NULL)
printf("\n The heap is empty");
else
{
NODE *temp = H->min;
NODE *pntr;
pntr = temp;
NODE *x = NULL;
if (temp->child != NULL)
{
x = temp->child;
do
{
pntr = x->right_sibling;
(H->min->left_sibling)->right_sibling = x;
x->right_sibling = H->min;
x->left_sibling = H->min->left_sibling;
H->min->left_sibling = x;
if (x->key < H->min->key)
H->min = x;
x->parent = NULL;
x = pntr;
} while (pntr != temp->child);
}
(temp->left_sibling)->right_sibling = temp->right_sibling;
(temp->right_sibling)->left_sibling = temp->left_sibling;
H->min = temp->right_sibling;
if (temp == temp->right_sibling && temp->child == NULL)
H->min = NULL;
else
{
H->min = temp->right_sibling;
consolidate(H);
}
H->n = H->n - 1;
return temp;
}
return H->min;
}
void cut(FIB_HEAP *H, NODE *node_to_be_decrease, NODE *parent_node)
{
NODE *temp_parent_check;
if (node_to_be_decrease == node_to_be_decrease->right_sibling)
parent_node->child = NULL;
node_to_be_decrease->left_sibling->right_sibling = node_to_be_decrease->right_sibling;
node_to_be_decrease->right_sibling->left_sibling = node_to_be_decrease->left_sibling;
if (node_to_be_decrease == parent_node->child)
parent_node->child = node_to_be_decrease->right_sibling;
(parent_node->degree)--;
node_to_be_decrease->left_sibling = node_to_be_decrease;
node_to_be_decrease->right_sibling = node_to_be_decrease;
H->min->left_sibling->right_sibling = node_to_be_decrease;
node_to_be_decrease->right_sibling = H->min;
node_to_be_decrease->left_sibling = H->min->left_sibling;
H->min->left_sibling = node_to_be_decrease;
node_to_be_decrease->parent = NULL;
node_to_be_decrease->mark = false;
}
void cascading_cut(FIB_HEAP *H, NODE *parent_node)
{
NODE *aux;
aux = parent_node->parent;
if (aux != NULL)
{
if (parent_node->mark == false)
{
parent_node->mark = true;
}
else
{
cut(H, parent_node, aux);
cascading_cut(H, aux);
}
}
}
void decrease_key(FIB_HEAP *H, NODE *node_to_be_decrease, int new_key)
{
NODE *parent_node;
if (H == NULL)
{
printf("\n FIbonacci heap not created ");
return;
}
if (node_to_be_decrease == NULL)
{
printf("Node is not in the heap");
}
else
{
if (node_to_be_decrease->key < new_key)
{
printf("\n Invalid new key for decrease key operation \n ");
}
else
{
node_to_be_decrease->key = new_key;
parent_node = node_to_be_decrease->parent;
if ((parent_node != NULL) && (node_to_be_decrease->key < parent_node->key))
{
printf("\n cut called");
cut(H, node_to_be_decrease, parent_node);
printf("\n cascading cut called");
cascading_cut(H, parent_node);
}
if (node_to_be_decrease->key < H->min->key)
{
H->min = node_to_be_decrease;
}
}
}
}
void *find_node(FIB_HEAP *H, NODE *n, int key, int new_key)
{
NODE *find_use = n;
NODE *f = NULL;
find_use->visited = true;
if (find_use->key == key)
{
find_use->visited = false;
f = find_use;
decrease_key(H, f, new_key);
}
if (find_use->child != NULL)
{
find_node(H, find_use->child, key, new_key);
}
if ((find_use->right_sibling->visited != true))
{
find_node(H, find_use->right_sibling, key, new_key);
}
find_use->visited = false;
}
FIB_HEAP *insertion_procedure()
{
FIB_HEAP *temp;
int no_of_nodes, ele, i;
NODE *new_node;
temp = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
temp = NULL;
if (temp == NULL)
{
temp = make_fib_heap();
}
printf(" \n enter number of nodes to be insert = ");
scanf("%d", &no_of_nodes);
for (i = 1; i <= no_of_nodes; i++)
{
printf("\n node %d and its key value = ", i);
scanf("%d", &ele);
insertion(temp, new_node, ele);
}
return temp;
}
void Delete_Node(FIB_HEAP *H, int dec_key)
{
NODE *p = NULL;
find_node(H, H->min, dec_key, -5000);
p = extract_min(H);
if (p != NULL)
printf("\n Node deleted");
else
printf("\n Node not deleted:some error");
}
int main(int argc, char **argv)
{
NODE *new_node, *min_node, *extracted_min, *node_to_be_decrease, *find_use;
FIB_HEAP *heap, *h1, *h2;
int operation_no, new_key, dec_key, ele, i, no_of_nodes;
heap = (FIB_HEAP *)malloc(sizeof(FIB_HEAP));
heap = NULL;
while (1)
{
printf(" \n choose below operations \n 1. Create Fibonacci heap \n 2. Insert nodes into fibonacci heap \n 3. Find min \n 4. Union \n 5. Extract min \n 6. Decrease key \n 7.Delete node \n 8. print heap \n 9. exit \n enter operation_no = ");
scanf("%d", &operation_no);
switch (operation_no)
{
case 1:
heap = make_fib_heap();
break;
case 2:
if (heap == NULL)
{
heap = make_fib_heap();
}
printf(" enter number of nodes to be insert = ");
scanf("%d", &no_of_nodes);
for (i = 1; i <= no_of_nodes; i++)
{
printf("\n node %d and its key value = ", i);
scanf("%d", &ele);
insertion(heap, new_node, ele);
}
break;
case 3:
min_node = find_min_node(heap);
if (min_node == NULL)
printf("No minimum value");
else
printf("\n min value = %d", min_node->key);
break;
case 4:
if (heap == NULL)
{
printf("\n no FIbonacci heap is created please create fibonacci heap \n ");
break;
}
h1 = insertion_procedure();
heap = unionHeap(heap, h1);
printf("Unified Heap:\n");
new_print_heap(heap->min);
break;
case 5:
if (heap == NULL)
printf("Fibonacci heap is empty");
else
{
extracted_min = extract_min(heap);
printf("\n min value = %d", extracted_min->key);
printf("\n Updated heap: \n");
new_print_heap(heap->min);
}
break;
case 6:
if (heap == NULL)
printf("Fibonacci heap is empty");
else
{
printf(" \n node to be decreased = ");
scanf("%d", &dec_key);
printf(" \n enter the new key = ");
scanf("%d", &new_key);
find_use = heap->min;
find_node(heap, find_use, dec_key, new_key);
printf("\n Key decreased- Corresponding heap:\n");
new_print_heap(heap->min);
}
break;
case 7:
if (heap == NULL)
printf("Fibonacci heap is empty");
else
{
printf(" \n Enter node key to be deleted = ");
scanf("%d", &dec_key);
Delete_Node(heap, dec_key);
printf("\n Node Deleted- Corresponding heap:\n");
new_print_heap(heap->min);
break;
}
case 8:
new_print_heap(heap->min);
break;
case 9:
free(new_node);
free(heap);
exit(0);
default:
printf("Invalid choice ");
}
}
}
// Operations on a Fibonacci heap in C++
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;
struct node
{
int n;
int degree;
node *parent;
node *child;
node *left;
node *right;
char mark;
char C;
};
class FibonacciHeap
{
private:
int nH;
node *H;
public:
node *InitializeHeap();
int Fibonnaci_link(node *, node *, node *);
node *Create_node(int);
node *Insert(node *, node *);
node *Union(node *, node *);
node *Extract_Min(node *);
int Consolidate(node *);
int Display(node *);
node *Find(node *, int);
int Decrease_key(node *, int, int);
int Delete_key(node *, int);
int Cut(node *, node *, node *);
int Cascase_cut(node *, node *);
FibonacciHeap() { H = InitializeHeap(); }
};
node *FibonacciHeap::InitializeHeap()
{
node *np;
np = NULL;
return np;
}
node *FibonacciHeap::Create_node(int value)
{
node *x = new node;
x->n = value;
return x;
}
node *FibonacciHeap::Insert(node *H, node *x)
{
x->degree = 0;
x->parent = NULL;
x->child = NULL;
x->left = x;
x->right = x;
x->mark = 'F';
x->C = 'N';
if (H != NULL)
{
(H->left)->right = x;
x->right = H;
x->left = H->left;
H->left = x;
if (x->n < H->n)
H = x;
}
else
{
H = x;
}
nH = nH + 1;
return H;
}
int FibonacciHeap::Fibonnaci_link(node *H1, node *y, node *z)
{
(y->left)->right = y->right;
(y->right)->left = y->left;
if (z->right == z)
H1 = z;
y->left = y;
y->right = y;
y->parent = z;
if (z->child == NULL)
z->child = y;
y->right = z->child;
y->left = (z->child)->left;
((z->child)->left)->right = y;
(z->child)->left = y;
if (y->n < (z->child)->n)
z->child = y;
z->degree++;
}
node *FibonacciHeap::Union(node *H1, node *H2)
{
node *np;
node *H = InitializeHeap();
H = H1;
(H->left)->right = H2;
(H2->left)->right = H;
np = H->left;
H->left = H2->left;
H2->left = np;
return H;
}
int FibonacciHeap::Display(node *H)
{
node *p = H;
if (p == NULL)
{
cout << "The Heap is Empty" << endl;
return 0;
}
cout << "The root nodes of Heap are: " << endl;
do
{
cout << p->n;
p = p->right;
if (p != H)
{
cout << "-->";
}
} while (p != H && p->right != NULL);
cout << endl;
}
node *FibonacciHeap::Extract_Min(node *H1)
{
node *p;
node *ptr;
node *z = H1;
p = z;
ptr = z;
if (z == NULL)
return z;
node *x;
node *np;
x = NULL;
if (z->child != NULL)
x = z->child;
if (x != NULL)
{
ptr = x;
do
{
np = x->right;
(H1->left)->right = x;
x->right = H1;
x->left = H1->left;
H1->left = x;
if (x->n < H1->n)
H1 = x;
x->parent = NULL;
x = np;
} while (np != ptr);
}
(z->left)->right = z->right;
(z->right)->left = z->left;
H1 = z->right;
if (z == z->right && z->child == NULL)
H = NULL;
else
{
H1 = z->right;
Consolidate(H1);
}
nH = nH - 1;
return p;
}
int FibonacciHeap::Consolidate(node *H1)
{
int d, i;
float f = (log(nH)) / (log(2));
int D = f;
node *A[D];
for (i = 0; i <= D; i++)
A[i] = NULL;
node *x = H1;
node *y;
node *np;
node *pt = x;
do
{
pt = pt->right;
d = x->degree;
while (A[d] != NULL)
{
y = A[d];
if (x->n > y->n)
{
np = x;
x = y;
y = np;
}
if (y == H1)
H1 = x;
Fibonnaci_link(H1, y, x);
if (x->right == x)
H1 = x;
A[d] = NULL;
d = d + 1;
}
A[d] = x;
x = x->right;
}
while (x != H1);
H = NULL;
for (int j = 0; j <= D; j++)
{
if (A[j] != NULL)
{
A[j]->left = A[j];
A[j]->right = A[j];
if (H != NULL)
{
(H->left)->right = A[j];
A[j]->right = H;
A[j]->left = H->left;
H->left = A[j];
if (A[j]->n < H->n)
H = A[j];
}
else
{
H = A[j];
}
if (H == NULL)
H = A[j];
else if (A[j]->n < H->n)
H = A[j];
}
}
}
int FibonacciHeap::Decrease_key(node *H1, int x, int k)
{
node *y;
if (H1 == NULL)
{
cout << "The Heap is Empty" << endl;
return 0;
}
node *ptr = Find(H1, x);
if (ptr == NULL)
{
cout << "Node not found in the Heap" << endl;
return 1;
}
if (ptr->n < k)
{
cout << "Entered key greater than current key" << endl;
return 0;
}
ptr->n = k;
y = ptr->parent;
if (y != NULL && ptr->n < y->n)
{
Cut(H1, ptr, y);
Cascase_cut(H1, y);
}
if (ptr->n < H->n)
H = ptr;
return 0;
}
int FibonacciHeap::Cut(node *H1, node *x, node *y)
{
if (x == x->right)
y->child = NULL;
(x->left)->right = x->right;
(x->right)->left = x->left;
if (x == y->child)
y->child = x->right;
y->degree = y->degree - 1;
x->right = x;
x->left = x;
(H1->left)->right = x;
x->right = H1;
x->left = H1->left;
H1->left = x;
x->parent = NULL;
x->mark = 'F';
}
int FibonacciHeap::Cascase_cut(node *H1, node *y)
{
node *z = y->parent;
if (z != NULL)
{
if (y->mark == 'F')
{
y->mark = 'T';
}
else
{
Cut(H1, y, z);
Cascase_cut(H1, z);
}
}
}
node *FibonacciHeap::Find(node *H, int k)
{
node *x = H;
x->C = 'Y';
node *p = NULL;
if (x->n == k)
{
p = x;
x->C = 'N';
return p;
}
if (p == NULL)
{
if (x->child != NULL)
p = Find(x->child, k);
if ((x->right)->C != 'Y')
p = Find(x->right, k);
}
x->C = 'N';
return p;
}
int FibonacciHeap::Delete_key(node *H1, int k)
{
node *np = NULL;
int t;
t = Decrease_key(H1, k, -5000);
if (!t)
np = Extract_Min(H);
if (np != NULL)
cout << "Key Deleted" << endl;
else
cout << "Key not Deleted" << endl;
return 0;
}
int main()
{
int n, m, l;
FibonacciHeap fh;
node *p;
node *H;
H = fh.InitializeHeap();
p = fh.Create_node(7);
H = fh.Insert(H, p);
p = fh.Create_node(17);
H = fh.Insert(H, p);
p = fh.Create_node(26);
H = fh.Insert(H, p);
p = fh.Create_node(1);
H = fh.Insert(H, p);
fh.Display(H);
p = fh.Extract_Min(H);
if (p != NULL)
cout << "The node with minimum key: " << p->n << endl;
else
cout << "Heap is empty" << endl;
m = 26;
l = 16;
fh.Decrease_key(H, m, l);
m = 16;
fh.Delete_key(H, m);
}
复杂度
减小键 | O(1) |
删除节点 | O(log n) |