numpy.median()
方法计算沿数组指定轴的均值。
示例
import numpy as np
# create an array
array1 = np.array([0, 1, 2, 3, 4, 5, 6, 7])
# calculate the median of the array
median1 = np.median(array1)
print(median1)
# Output: 3.5
median() 语法
numpy.median()
方法的语法是
numpy.median(array, axis = None, out = None, overwrite_input = False, keepdims = <no value>)
median() 参数
numpy.median()
方法接受以下参数
array
- 包含需要计算均值的数字的数组 (可以是array_like
)axis
(可选) - 计算均值的轴或轴 (int
或tuple of int
)out
(可选) - 用于存放结果的输出数组(ndarray
)override_input
(可选) - 确定中间计算是否可以修改数组的bool
值keepdims
(可选) - 指定是否保留原始数组的形状(bool
)
注意: numpy.median()
的默认值有以下含义
axis = None
- 取整个数组的均值。- 默认情况下,不传递
keepdims
。
median() 返回值
numpy.median()
方法返回数组的均值。
示例 1:查找 ndArray 的均值
import numpy as np
# create an array
array1 = np.array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
# find the median of the entire array
median1 = np.median(array1)
# find the median across axis 0
median2 = np.median(array1, 0)
# find the median across axis 0 and 1
median3 = np.median(array1, (0, 1))
print('\nmedian of the entire array:', median1)
print('\nmedian across axis 0:\n', median2)
print('\nmedian across axis 0 and 1', median3)
输出
median of the entire array: 3.5 median across axis 0: [[2. 3.] [4. 5.]] median across axis 0 and 1 [3. 4.]
示例 2:使用可选的 keepdims 参数
如果将 keepdims
设置为 True
,则生成的均值数组与原始数组具有相同的维度数。
import numpy as np
array1 = np.array([[1, 2, 3],
[4, 5, 6]])
# keepdims defaults to False
result1 = np.median(array1, axis = 0)
# pass keepdims as True
result2 = np.median(array1, axis = 0, keepdims = True)
print('Dimensions in original array:', array1.ndim)
print('Without keepdims:', result1, 'with dimensions', result1.ndim)
print('With keepdims:', result2, 'with dimensions', result2.ndim)
输出
Dimensions in original array: 2 Without keepdims: [2.5 3.5 4.5] with dimensions 1 With keepdims: [[2.5 3.5 4.5]] with dimensions 2
示例 3:使用可选的 out 参数
out
参数允许指定一个输出数组,结果将存储在该数组中。
import numpy as np
array1 = np.array([[1, 2, 3],
[4, 5, 6]])
# create an output array
output = np.zeros(3)
# compute median and store the result in the output array
np.median(array1, out = output, axis = 0)
print('median:', output)
输出
median: [2.5 3.5 4.5]